scholarly journals The collaborative phenotype of secondary B cells is determined by T lymphocytes during in vivo immunization.

1982 ◽  
Vol 155 (2) ◽  
pp. 574-586 ◽  
Author(s):  
N A Speck ◽  
S K Pierce

Previous studies have demonstrated that the B cells in immune and nonimmune mice manifest different major histocompatibility complex (MHC) collaborative phenotypes with antigen-specific T cells. Immune, or secondary B cells require syngeneic-like MHC recognition by collaborating T cells, and in its absence fail to be stimulated. Primary B cells manifest a much less stringent requisite for MHC recognition by T cells, and under conditions in which secondary B cells fail to be stimulated, primary B cells are stimulated to secrete IgM antibody. Experiments were conducted to determine whether the acquisition of the secondary B cells' MHC collaborative phenotype was dependent on the presence of T cells during in vivo immunization. B cell populations from T dependently and T independently immunized conventional BALB/c and athymic BALB/c nu/nu mice were compared in their ability to collaborate with allogeneic T cells. Although antigen alone promotes the differentiation of several secondary B cell characteristics, including an increase in the frequency of antigen-specific B cells and a preference for IgG1 antibody synthesis in vitro, the acquisition of the secondary B cells' MHC collaborative phenotype was dependent on the presence of T cells during in vivo immunization. B cell populations from T dependently and T independently immunized conventional BALB/c and athymic BALB/c nu/nu mice were compared in their ability to collaborate with allogeneic T cells. Although antigen alone promotes the differentiation of several secondary B cell characteristics, including an increase in the frequency of antigen-specific B cells and a preference of IgG1 antibody synthesis in vitro, the acquisition of the secondary B cells' MHC collaborative phenotype was found to be dependent on the presence of T cells during in vivo immunization. Thus, the restriction imposed on T cell-B-cell-collaborative interactions in secondary humoral immune responses appears to be the result of T dependent antigen-driven events.

1987 ◽  
Vol 165 (6) ◽  
pp. 1675-1687 ◽  
Author(s):  
A G Rolink ◽  
T Radaszkiewicz ◽  
F Melchers

A quantitative analysis of the frequencies of autoantibody-producing B cells in GVHD and in normal mice has been undertaken by generating collections of hybridomas of activated B cells. These hybridomas secreted sufficient quantities of Ig to allow binding analyses on a panel of autoantigens. B cells have been activated in a variety of ways. In vivo they were activated by injection of alloreactive T cells of one parent, leading to GVHD by a foreign antigen, sheep erythrocytes, in a secondary response, or by the polyclonal activator LPS. B cells from an experimentally unstimulated animal were used for an analysis of the normal background. In vitro B cells were activated by alloreactive T cells or by LPS. The frequencies of hybridomas and, therefore, of activated B cells producing autoantibodies to DNA or to kidney were not significantly different in mice activated by a graft-vs.-host T cell response as compared with B cell populations activated by any of the other procedures. They were found to compose 7.1-17.1% of the total repertoire of activated B cells. Moreover, the frequencies of autoantibody-producing activated B cells does not change with time after induction of the graft-vs.-host reaction. The pattern and frequencies of autoantigen-binding specificities to cytoskeleton, smooth muscle, nuclei, mitochondria, and DNA were not found to be different in any of the groups of hybridomas. The single notable exception, found in GVHD mice, were hybridomas producing autoantibodies to kidney proximal tubular brush border. These results allow the conclusion that autoantigen-binding B cells exist in an activated state in GVHD mice, as well as in mice activated by a foreign antigen or by a polyclonal activator, in B cell populations activated in vitro either by alloreactive T cells or by a polyclonal activator, and even in the background of experimentally unstimulated animals. T cell-mediated graft-vs.-host activation, in large part, does not lead to a selective expansion of autoantigen-binding B cells. The main difference between the graft-vs.-host-activated B cell repertoire and all others is that approximately 90% of teh autoantibodies were of the IgG class, whereas al autoantibodies found in the other groups were IgM.


1974 ◽  
Vol 139 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Patricia G. Spear ◽  
Gerald M. Edelman

In spite of the prenatal appearance of immunoglobulin-bearing lymphocytes and θ-positive lymphocytes in the spleens of Swiss-L mice, these mice are not able to produce detectable levels of humoral antibodies in response to antigen until after 1 wk of age. Adult levels of response are not achieved until 4–8 wk of age. In the presence of bacterial lipopolysaccharides, which can substitute for or enhance T-cell function, the B cells from young Swiss-L mice were found to be indistinguishable in function from adult B cells, both with respect to the numbers of plaque-forming cells (PFC) produced in vitro in response to antigen and with respect to the kinetics of PFC induction. The spleen cells from young Swiss-L mice are significantly less sensitive than adult spleen cells, however, to stimulation by the T cell mitogens, concanavalin A (Con A) and phytohemagglutinin (PHA). Very few Con A-responsive cells could be detected at birth but the numbers increased sharply with age until 3 wk after birth. On the other hand, PHA-responsive cells could not be detected in the spleen until about 3 wk of age. The latter cells were found to respond also to Con A, but at a lower dose (1 µg/ml) than that required for the bulk of the Con A-responsive cells (3 µg/ml). The cells that respond both to PHA and to Con A appear in the spleen at about the time that Swiss-L mice acquire the ability to produce humoral antibodies, and these cells can be depleted from the spleen by the in vivo administration of antithymocyte serum. The development of humoral immune responses in these mice therefore appears to be correlated with the appearance of recirculating T lymphocytes that are responsive both to PHA and to Con A.


2014 ◽  
Vol 96 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Hilke Brühl ◽  
Josef Cihak ◽  
Nicole Goebel ◽  
Yvonne Talke ◽  
Kerstin Renner ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 935-935
Author(s):  
Yvonne A. Efebera ◽  
Tahamtan Ahmadi ◽  
Amanda Flies ◽  
David H. Sherr

Abstract Background: An increased understanding of the requirements for antigen presentation has encouraged development of cell-based cancer vaccines. Trials using dendritic cells (DC) as antigen presenting cells (APC) for immunotherapy of several malignancies have shown considerable success. However, the difficulty in generating large numbers of DC required for these immunizations has led to the search for alternative APC. One such candidate is the CD40 ligand (CD40L)-activated B cell, populations of which can readily be expanded in vitro. To be an effective vehicle for antigen presentation to T cells, CD40L-activated B cells must be capable of migrating to secondary lymphoid organs. Therefore, CD40L-activated B cell migration following subcutaneous or intravenous injection was evaluated. Methods: Splenic B cells from GFP transgenic mice were activated with CD40L + IL-4 and expanded in vitro prior to i.v. or s.c. injection of 3–4 x 107 into C57BL/6 mice. Recipient mice were sacrificed 2 hrs or 1–14 days thereafter and the percentage of GFP+/B220+ B cells quantified in spleens and lymph nodes by flow cytometry. Localization of these cells within lymphoid organs was determined by immunohistochemistry. In some experiments, activated C57BL/6 B cells were labeled with carboxy fluorescein succinimidyl ester (CFSE) to evaluate cell growth in vivo. Results: Murine B cell populations were readily expanded by culture on CD40L-transfected L cells in the presence of IL-4. CD40L-activated B cells expressed high levels of CD80, CD86, and LFA-1 but decreased levels of L-selectin relative to naive cells. Following i.v. injection, activated B cells were detected in spleens and lymph nodes within 1 day. Peak concentrations of activated B cells were noted in spleens and lymph nodes on days 7 (4.8% of injected cells) and 10 (1.25% of injected cells) respectively, suggesting expansion of the activated B cell population in vivo. Naive B cells injected i.v. were detected within 1 day but their number declined precipitously thereafter. Following s.c. injection, peak levels of CD40L-activated B cells were noted on day 5 (spleens) and day 7 (lymph nodes). As determined by immunohistochemistry, both CD40L-activated and naïve B cells injected i.v. appeared in B cell regions of spleens and lymph nodes. While the kinetics of accumulation of CD40L-activated B cells injected s.c. or i.v. were similar, s.c. injected CD40L-activated B cells homed to the T cell regions of spleens and lymph nodes. CFSE experiments indicated that these activated B cells continue to grow in vivo. In contrast, naïve B cells injected s.c. only appeared in B cell regions. Conclusion: CD40L-activated B cell populations can readily be expanded in vitro, CD40L-activated B cells migrate to secondary lymphoid organs even when injected s.c., activated B cell populations expand in vivo, and s.c. injected, CD40L-activated B cells preferentially home to T cell regions of secondary lymphoid organs. These results suggest that this effective APC may serve as an important vehicle for delivery and presentation of exogenous (e.g. tumor) antigens to T cells in vivo.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2740-2740
Author(s):  
Kerstin Wennhold ◽  
Nela Klein-Gonzalez ◽  
Michael von Bergwelt-Baildon ◽  
Alexander Shimabukuro-Vornhagen

Abstract In recent years, there has been a growing interest in the use of B cells for cellular immunotherapy, since B cell-based cancer vaccines have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated (CD40) B cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. The dynamic interactions of human antigen-presenting cells and antigen-specific T cells were observed by time-lapse videomicroscopy. The migratory and chemoattractant potential of CD40B cells was analyzed by flow cytometry and standard transwell migration assays. GFP+ CD40B cells or CD40B cells isolated from Luciferase+mice were used for subsequent in vivo studies. Murine CD40B cells show similar migratory and chemotactic characteristics compared to human CD40B cells. Upon CD40-activation, B cells upregulate the important molecules involved in lymh node homing (CD62L, CCR7/CDCR4), which are functional and induce chemotaxis of T cells in vitro. Striking differences were observed for interactions of human CD40B cells or DCs with T cells. Antigen-loaded CD40B cells differ from immature and mature DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived (7.5 min) and sequential interactions with cognate T cells. In vivo, CD40B cells migrate to the spleen and the lymph nodes, where they enrich in the B cell zone before traveling to B cell/ T cell boundary close to the T cell zone. CD40B cell interactions with T cells are dynamic and short-lived and thereby differ from DCs. Taken together, the migration behavior of CD40B cells and their interaction with T cells underline their potential as cellular adjuvant for cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 2 (18) ◽  
pp. 2332-2340 ◽  
Author(s):  
Kalpana Parvathaneni ◽  
David W. Scott

Abstract Hemophilia A is an X-linked bleeding disorder caused by mutations in the factor VIII (FVIII) gene (F8). Treatment with recombinant or plasma-derived FVIII replacement therapy is standard therapy. A major problem in treating hemophilia A patients with therapeutic FVIII is that 20% to 30% of these patients produce neutralizing anti-FVIII antibodies (inhibitors) because they are not immunologically tolerant to this human protein. Hence, there is a need to establish tolerogenic protocols to FVIII epitopes. To specifically target FVIII-specific B cells, we engineered immunodominant FVIII domains (A2 and C2) as a chimeric antigen receptor expressed by both human and murine cytotoxic T cells. This FVIII domain engineered B-cell antibody receptor (BAR) that expresses T cells was capable of killing FVIII-reactive B-cell hybridomas in vitro and in vivo. Moreover, FVIII BAR CD8 T cells blocked the development of specific antibody from unimmunized spleen cells stimulated polyclonally with lipopolysaccharide in vitro. In addition, adoptive transfer of FVIII A2- and C2-BAR CD8 T cells significantly reduced the anti-FVIII antibody formation in hemophilic mice. These data suggest that BAR-engineered T cells are a promising approach for future prophylactic treatment for patients with severe hemophilia A who are at high risk of developing inhibitors.


1980 ◽  
Vol 152 (5) ◽  
pp. 1194-1309 ◽  
Author(s):  
H S Boswell ◽  
M I Nerenberg ◽  
I Scher ◽  
A Singer

The effect of the X-linked CBA/N genetic defect on the ability of mice to generate primary responses to thymic-dependent and thymic-independent antigens was assessed by comparing the ability of abnormal (CBA/N x DBA/2)F1 male mice and normal (DBA/2 x CBA/N)F1 male mice to generate 2,4,6-trinitrophenyl (TNP)-specific plaque-forming cell responses to TNP-keyhole limpet hemocyanin (KLH), TNP-conjugated Ficoll (TNP-Ficoll), TNP-Brucella abortus (BA), and TNP-lipopolysaccharide (LPS). The reciprocal F1 combinations used in this study differ genetically only in the origin of their X chromosome, but differ immunologically in that (CBA/N x DBA/2)F1 male mice express all the CBA/N immune abnormalities, whereas (DBA/2 x CBA/N)F1 male mice are immunologically normal. Analysis of thymic-dependent responses to TNP-KLH revealed that abnormal F1 mice were capable of generating primary responses in vivo to high doses of TNP-KLH, but failed to generate responses to suboptimal doses of TNP-KLH that were still immunogenic for normal F1 mice. Furthermore, under limiting in vitro micro-culture conditions, the abnormal F1 mice failed to generate primary thymic-dependent responses to any dose of TNP-KLH, even though under the identical conditions normal F1 mice consistently responded to a wide antigen dose range. The cellular basis of the failure of abnormal F1 mice to respond in vitro to TNP-KLH was investigated by assaying the ability of purified populations of accessory cells, T cells, and B cells from these mice to function in responses to TNP-KLH. The results of these experiments demonstrated that helper T cells and antigen-presenting accessory cells from abnormal F1 mice were competent and functioned as well as the equivalent cell populations from normal F1 mice. Instead, the failure of CBA/N mice to generate primary in vitro responses to TNP-KLH was solely the result of a defect in their B cell population such that B cells from these mice failed to be triggered by competent helper T cells and/or competent accessory cells. Similarly, the failure of abnormal F1 mice to respond either in vivo or in vitro to TNP-Ficoll was not the result of defective accessory cell presentation of TNP-Ficoll, but was the result of the failure of B cells from these mice to be activated by competent TNP-Ficoll-presenting accessory cells. In contrast to the failure of B cells from abnormal F1 mice to be activated in vitro in response to either TNP-KLH or TNP-Ficoll, B cells from abnormal F1 mice were triggered to respond to TNP-BA and TNP-LPS, antigens that did not require accessory cell presentation. The specific failure of B cells fron abnormal F1 mice to be activated in responses that required antigen-presentation by accessory cells suggested the possibility that the X-linked CBA/N genetic defect resulted in B cell populations that might be deficient in their ability to interact with antigen-presenting accessory cells...


2019 ◽  
Vol 32 (1) ◽  
pp. 17-26
Author(s):  
Rongjian Hong ◽  
Nannan Lai ◽  
Ermeng Xiong ◽  
Rika Ouchida ◽  
Jiping Sun ◽  
...  

Abstract B-cell novel protein 1 (BCNP1) has recently been identified as a new B-cell receptor (BCR) signaling molecule but its physiological function remains unknown. Here, we demonstrate that mice deficient in BCNP1 exhibit impaired B-cell maturation and a reduction of B-1a cells. BCNP1-deficient spleen B cells show enhanced survival, proliferation and Ca2+ influx in response to BCR cross-linking as compared with wild-type spleen B cells. Consistently, mutant B cells show elevated phosphorylation of SYK, B-cell linker protein (BLNK) and PLCγ2 upon BCR cross-linking. In vivo, BCNP1-deficient mice exhibit enhanced humoral immune responses to T-independent and T-dependent antigens. Moreover, aged mutant mice contain elevated levels of serum IgM and IgG3 antibodies and exhibit polyclonal and monoclonal B-cell expansion in lymphoid organs. These results reveal distinct roles for BCNP1 in B-cell development, activation and homeostasis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 477-477
Author(s):  
Shih-Shih Chen ◽  
Constantine S. Tam ◽  
Alan G. Ramsay ◽  
Priyadarshini Ravichandran ◽  
Natalia C. Couto-Francisco ◽  
...  

Bruton's tyrosine kinases inhibitors (BTKis) represent major advances in CLL therapy. However resistance to this form of therapy is emerging, and such patients often progress more rapidly. Hence there is an important need for therapies that address resistance. Microenvironmental input like IL-4 is critical for CLL disease progression. Compared with normal B cells, CLL cells exhibit significantly higher levels of surface membrane (sm) IL-4 receptor (IL4-R) and contain increased amounts of pSTAT6, a downstream mediator of IL-4R signaling. IL-4 stimulation of CLL B cells suppresses smCXCR4 and increases smIgM, thus promotes CLL cell retention and expansion. In this study, we aimed to examine if smIL-4R expression, IL4R signaling, and IL-4-producing cells are altered in patients sensitive or resistant to BTKis. To do so, T and B cell subset changes were studied overtime in 12 acalabrutinib-treated CLL patients, 6 zanubrutinib-treated CLL patients, 30 ibrutinib-sensitive and 5 ibrutinib-resistant CLL patients, 4 of which exhibited BTK mutations. Consistent with only ibrutinib inhibiting T-cell kinase (ITK), T-cell subset analyses revealed no changes in Th1, Th2, Th17, Th9, and Th22 cells after zanubrutinib or acalabrutinib treatment. In contrast, a Th1-biased T-cell immunity was observed in patients responsive to ibrutinib. In patients progressing on ibrutinib, significantly reduced Th2 T cells were found during the resistant as well as sensitive periods. In an in vitro T-cell function assay using T cells collected before and after the treatment with each BTKi, only ibrutinib treated patients exhibited a reduced ability of T cells to support CLL B cell survival. We next studied changes in CLL B cells, including numbers of IL-4, -10 and -13 producing B cells after BTKi treatment. IL-13 producing CLL B cells were not changed. IL-10 producing CLL B cells were reduced in both ibrutinib sensitive and resistant patients, but not in zanubrutinib or acalabrutinib treated patients. Importantly, IL-4 producing CLL B cells were significantly decreased in patients treated with all 3 BTKi. Significantly reduced smIL-4R levels, impaired IL-4R signaling, decreased smIgM and increased smCXCR4 were also seen in patients treated with each BTKi. To understand the mechanism responsible for inhibition of IL-4 production in CLL cells treated with BTKis, we stimulated CLL cells through IgM, Toll-like receptor and CD40L, finding that only anti-IgM stimulation significantly increased IL-4 production and p-STAT6 induction. We then explored the function of IL-4. IL-4 enhanced CLL B cell survival in vitro and this action was blocked by all 3 BTKis. Moreover, adhesion of CLL B cells to smIL-4R expressing stromal cells was decreased by IL-4 and IL-4R neutralizing antibodies, especially in M-CLL cases. In in vivo studies transferring autologous T cells and CLL PBMCs into alymphoid mice, we found less CLL B cells in mouse spleens post ibrutinib than zanubrutinib or acalabrutinib treatment. This might be due to the suppressed Th2 cells found only in ibrutinib, while IL-4 producing B cells were reduced in all 3 BTKi treated mice. These results support the idea that IL-4 promotes CLL B cell adhesion and growth in tissues. Finally, we investigated the IL-4/IL-4R axis in ibrutinib-resistant patients. Although IL-4 producing T cells remain reduced during the sensitive and resistant phases, CLL B cell production of IL-4 and expression of and signaling through smIL-4R returned when patients developed ibrutinib-resistance. When comparing paired ibrutinib-sensitive and -resistant CLL B cells collected from 3 patients in a xenograft model that requires T cell help, we found ibrutinib-resistant CLL B cells grew in vivo with only minimal (~15%) numbers of autologous T cells compared to B cells collected from ibrutinib-sensitive phase; this suggested a reduced requirement for T-cell help for growth of ibrutinib-resistant CLL cells. In summary, we found IL-4 is a key survival factor in the CLL microenvironment that also improves leukemia cell adhesion to stromal cells expressing smIL-4R. IL-4 production and signaling can be stimulated in CLL B cells through the B-cell receptor, and are consistently blocked by BTKis. Moreover, the recovered ability of ibrutinib-resistant CLL B cells to produce and respond to IL-4 leads to disease progression, suggesting blocking the IL-4/IL-4R axis is a potential treatment for ibrutinib-resistant CLL patients. Disclosures Chen: Pharmacyclics: Research Funding; Beigene: Research Funding; Verastem: Research Funding; ArgenX: Research Funding. Tam:Abbvie, Janssen: Research Funding; Abbvie, Janssen, Beigene, Roche, Novartis: Honoraria. Ramsay:Celgene Corporation: Research Funding; Roche Glycart AG: Research Funding. Kolitz:Boeringer-Ingelheim: Research Funding; Roche: Research Funding; Astellas: Research Funding. Zhou:BeiGene: Employment. Barrientos:Genentech: Consultancy; Gilead: Consultancy; Janssen: Consultancy; Abbvie: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding. Rai:Pharmacyctics: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Cellectis: Membership on an entity's Board of Directors or advisory committees; Genentech/Roche: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2330-2330
Author(s):  
Constantijn J.M. Halkes ◽  
Inge Jedema ◽  
Judith Olde Wolbers ◽  
Esther M van Egmond ◽  
Peter A. Von Dem Borne ◽  
...  

Abstract Abstract 2330 In vivo T cell depletion with anti-thymocyte globulin (ATG) or alemtuzumab (anti-CD52) before reduced intensity allogeneic stem cell transplantation (alloSCT) in combination with in vitro T cell depletion with alemtuzumab reduces the risk of GVHD. Detectable levels of circulating antibodies are present up to several months after the alloSCT, leading to a delayed immune reconstitution which is associated with an increased incidence of opportunistic infections and early relapses. Prior to 2007, combined in vitro (Alemtuzumab 20 mg added “to the bag”) and in vivo T cell depletion with horse-derived ATG (h-ATG) resulted in good engraftment without GVHD in the absence of GVHD prophylaxis after reduced intensity alloSCT using conditioning with fludarabine and busulphan. Due to the unavailability of h-ATG, rabbit-derived ATG (r-ATG) 10–14 mg/kg was introduced in the conditioning regimen in 2007. Strikingly, in this cohort of patients, early EBV reactivation and EBV-associated post-transplantation lymphoproliferative disease (PTLD) was observed in 10 out of 18 patients at a median time of 6 weeks after alloSCT (range 5 to 11 weeks) in the absence of GVHD or immunosuppressive treatment. Analysis of T and B cell recovery early after transplantation revealed preferential depletion of T cells as compared to B cells, thereby allowing unrestricted proliferation of EBV infected B cells. Due to this unacceptable high incidence of EBV-related complications, in the conditioning regimen r-ATG was replaced by low dose alemtuzumab (15 mg i.v. day -4 and -3) in 2008. In this cohort of 60 patients, only 2 patients experienced transient EBV reactivation during the first 3 months after alloSCT and one patient developed an EBV-associated lymphoma 4 weeks after alloSCT. To investigate the mechanisms underlying the low incidence of EBV reactivation using alemtuzumab for T cell depletion, we studied the in vivo and in vitro effects of alemtuzumab on different lymphocyte subsets. First, lineage-specific reconstitution was studied in 20 patients from the alemtuzumab cohort with known CD52 negative diseases (11 AML and 9 multiple myeloma) to exclude the confounding effect of antibody absorption by malignant cells. Whereas at 3 weeks after alloSCT detectable numbers of circulating NK cells and T cells were observed (medians 71 (range 6–378), and 12 (range 1–1164)E6/L, respectively), no circulating B cells could be detected (median 0, range 0–1 E6/L). At 6 weeks after alloSCT, NK and T cell numbers further increased (medians 212 (52-813), and 130 (range 25–1509)E6/L, respectively), whereas B cell numbers still remained low in the majority of patients (median 15, range 0–813E6/L). In all patients, T cells were detectable before the appearance of circulating B cells. Furthermore, the expression of CD52 and the sensitivity to alemtuzumab-mediated complement-dependent cell lysis (CDC) of B cells, T cells and NK cells was measured in vitro. The highest CD52 expression was observed on B cells (mean fluorescence intensity (MFI) 120), resulting in 95% lysis after incubation with 10ug/mL alemtuzumab and rabbit complement. NK cells showed a significantly lower CD52 expression (MFI 41), which was also reflected by a lower susceptibility to alemtuzumab-mediated CDC (62% lysis). Interestingly, differential expression of CD52 was observed on CD4 and CD8 T cells (MFI 120 and 101, respectively). Cytotoxicity analysis revealed relative protection of CD8 compared to CD4 T cells against alemtuzumab-mediated CDC, resulting in 52% and 90% lysis, respectively. Based on these results, we investigated in detail the presence and phenotype of the CD4 and CD8 subsets and EBV-specific CD8 T cells using tetramer staining at 6 weeks after alloSCT. In accordance with the in-vitro expression and susceptibility data, circulating CD52+ CD8 T cells including EBV-specific T cells were detectable. Interestingly, the majority of circulating CD4 T cells (64-93%, n=4) lacked CD52 expression, explaining their capacity to persist in the presence of alemtuzumab. We conclude that in vivo and in vitro T cell depletion with alemtuzumab is associated with a relatively low risk of EBV-associated PTLD because of efficient B cell depletion and persistent EBV immunity allowed by the relative insusceptibility for alemtuzumab of CD8 T cells and the development of CD52 negative escape variants of CD4 T cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document