scholarly journals Human leukocyte antigen F (HLA-F). An expressed HLA gene composed of a class I coding sequence linked to a novel transcribed repetitive element.

1990 ◽  
Vol 171 (1) ◽  
pp. 1-18 ◽  
Author(s):  
D E Geraghty ◽  
X H Wei ◽  
H T Orr ◽  
B H Koller

We describe here the isolation and sequencing of a previously uncharacterized HLA class I gene. This gene, HLA-5.4, is the third non-HLA-A,B,C gene characterized whose sequence shows it encodes an intact class I protein. RNase protection assays with a probe specific for this gene demonstrated its expression in B lymphoblastoid cell lines, in resting T cells, and skin cells, while no mRNA could be detected in the T cell line Molt 4. Consistent with a pattern of expression different from that of other class I genes, DNA sequence comparisons identified potential regulator motifs unique to HLA-5.4 and possibly essential for tissue-specific expression. Protein sequence analysis of human and murine class I antigens has identified 10 highly conserved residues believed to be involved in antigen binding. Five of these are altered in HLA-5.4, and of these, three are nonconservative. In addition, examination of the HLA-5.4 DNA sequence predicts that the cytoplasmic segment of this protein is shorter than that of the classical transplantation antigens. The 3' untranslated region of the HLA-5.4 gene contains one member of a previously undescribed multigene family consisting of at least 30 members. Northern analysis showed that several of these sequences were transcribed, and the most ubiquitous transcript, a 600-nucleotide polyadenylated mRNA, was found in all tissues and cells examined. This sequence is conserved in the mouse genome, where a similar number of copies were found, and one of these sequences was also transcribed, yielding a 600-nucleotide mRNA. The characterization of this unique HLA class I gene and the demonstration of its tissue-specific expression have prompted us to propose that HLA-5.4 be designated HLA-F.

Gene ◽  
1987 ◽  
Vol 61 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Brigitte David-Watine ◽  
Catherine Transy ◽  
Gabriel Gachelin ◽  
Philippe Kourilsky

1988 ◽  
Vol 263 (34) ◽  
pp. 18530-18536 ◽  
Author(s):  
K Higuchi ◽  
S W Law ◽  
J M Hoeg ◽  
U K Schumacher ◽  
N Meglin ◽  
...  

1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.


Cell ◽  
1984 ◽  
Vol 38 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Galvin H. Swift ◽  
Robert E. Hammer ◽  
Raymond J. MacDonald ◽  
Ralph L. Brinster

1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300 ◽  
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.


Sign in / Sign up

Export Citation Format

Share Document