Stable transfer and restricted expression of a cloned class I gene encoding a secreted transplantation-like antigen

1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.

1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300 ◽  
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.


1990 ◽  
Vol 171 (1) ◽  
pp. 1-18 ◽  
Author(s):  
D E Geraghty ◽  
X H Wei ◽  
H T Orr ◽  
B H Koller

We describe here the isolation and sequencing of a previously uncharacterized HLA class I gene. This gene, HLA-5.4, is the third non-HLA-A,B,C gene characterized whose sequence shows it encodes an intact class I protein. RNase protection assays with a probe specific for this gene demonstrated its expression in B lymphoblastoid cell lines, in resting T cells, and skin cells, while no mRNA could be detected in the T cell line Molt 4. Consistent with a pattern of expression different from that of other class I genes, DNA sequence comparisons identified potential regulator motifs unique to HLA-5.4 and possibly essential for tissue-specific expression. Protein sequence analysis of human and murine class I antigens has identified 10 highly conserved residues believed to be involved in antigen binding. Five of these are altered in HLA-5.4, and of these, three are nonconservative. In addition, examination of the HLA-5.4 DNA sequence predicts that the cytoplasmic segment of this protein is shorter than that of the classical transplantation antigens. The 3' untranslated region of the HLA-5.4 gene contains one member of a previously undescribed multigene family consisting of at least 30 members. Northern analysis showed that several of these sequences were transcribed, and the most ubiquitous transcript, a 600-nucleotide polyadenylated mRNA, was found in all tissues and cells examined. This sequence is conserved in the mouse genome, where a similar number of copies were found, and one of these sequences was also transcribed, yielding a 600-nucleotide mRNA. The characterization of this unique HLA class I gene and the demonstration of its tissue-specific expression have prompted us to propose that HLA-5.4 be designated HLA-F.


Gene ◽  
1987 ◽  
Vol 61 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Brigitte David-Watine ◽  
Catherine Transy ◽  
Gabriel Gachelin ◽  
Philippe Kourilsky

1988 ◽  
Vol 263 (34) ◽  
pp. 18530-18536 ◽  
Author(s):  
K Higuchi ◽  
S W Law ◽  
J M Hoeg ◽  
U K Schumacher ◽  
N Meglin ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2799-2812 ◽  
Author(s):  
A. McCormick ◽  
N. Core ◽  
S. Kerridge ◽  
M.P. Scott

Along the anterior-posterior axis of animal embryos, the choice of cell fates, and the organization of morphogenesis, is regulated by transcription factors encoded by clustered homeotic or ‘Hox’ genes. Hox genes function in both epidermis and internal tissues by regulating the transcription of target genes in a position- and tissue-specific manner. Hox proteins can have distinct targets in different tissues; the mechanisms underlying tissue and homeotic protein specificity are unknown. Light may be shed by studying the organization of target gene enhancers. In flies, one of the target genes is teashirt (tsh), which encodes a zinc finger protein. tsh itself is a homeotic gene that controls trunk versus head development. We identified a tsh gene enhancer that is differentially activated by Hox proteins in epidermis and mesoderm. Sites where Antennapedia (Antp) and Ultrabithorax (Ubx) proteins bind in vitro were mapped within evolutionarily conserved sequences. Although Antp and Ubx bind to identical sites in vitro, Antp activates the tsh enhancer only in epidermis while Ubx activates the tsh enhancer in both epidermis and in somatic mesoderm. We show that the DNA elements driving tissue-specific transcriptional activation by Antp and Ubx are separable. Next to the homeotic protein-binding sites are extensive conserved sequences likely to control tissue activation by different homeodomain proteins. We propose that local interactions between homeotic proteins and other factors effect activation of targets in proper cell types.


Cell ◽  
1984 ◽  
Vol 38 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Galvin H. Swift ◽  
Robert E. Hammer ◽  
Raymond J. MacDonald ◽  
Ralph L. Brinster

Sign in / Sign up

Export Citation Format

Share Document