scholarly journals Regulation of parasite-induced eosinophilia: selectively increased interleukin 5 production in helminth-infected patients.

1990 ◽  
Vol 172 (1) ◽  
pp. 399-402 ◽  
Author(s):  
A P Limaye ◽  
J S Abrams ◽  
J E Silver ◽  
E A Ottesen ◽  
T B Nutman

Production of the eosinophilogenic cytokines interleukin 3 (IL-3), granulocyte/macrophage colony-stimulating factor (GM-CSF), and IL-5 by mitogen-stimulated peripheral blood mononuclear cells was compared between 11 noneosinophilic individuals and seven patients with helminth-induced eosinophilia. Both the kinetics and quantities of IL-3 and GM-CSF were similar in the two groups. In contrast, IL-5 production at both the protein and the mRNA level was markedly greater in the eosinophilic patients, an observation suggesting that IL-5 may be particularly important in mediating the selective eosinophilia seen in filarial and other helminth infections.

Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4269-4277 ◽  
Author(s):  
Y Suen ◽  
SM Lee ◽  
J Schreurs ◽  
E Knoppel ◽  
MS Cairo

We have previously shown that protein production and mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and interleukin-3 are decreased in stimulated mononuclear cells (MNCs) from human umbilical cord compared with adult peripheral blood. These deficiencies may contribute to the increased susceptibility of neonates to infection. Macrophage colony- stimulating factor (M-CSF) regulates the proliferation, differentiation, and functional activation of monocytes. In the present study, we compared the regulation of M-CSF gene expression and protein production from stimulated cord and adult MNCs. Upon adhesion to tissue culture flasks, both cord and adult MNCs constitutively expressed M-CSF mRNA. In response to both adhesion and recombinant human GM-CSF (rhGM- CSF) stimulation for 120 hours, radioimmunoassays and bioassays showed that cord MNCs produced twofold to threefold less M-CSF protein compared with adult MNCs. Northern blot analysis also showed a fourfold decrease in M-CSF mRNA expression in both unstimulated and GM-CSF- induced cord versus adult MNCs. M-CSF mRNA expression in both cord and adult MNCs peaked between 16 and 24 hours and decreased to normal levels by 48 hours. We next determined the relative rates of transcription of the M-CSF gene by nuclear run-on assays in both cord and adult MNCs. The basal level signal of the M-CSF gene was similar between cord and adult MNCs. The transcriptional rate after stimulation with rhGM-CSF appeared to increase to a similar extent in both cord and adult MNCs (130% +/- 10% v 150% +/- 15%, C v A, n = 3, mean +/- SD). The comparative stability of M-CSF mRNA from cord versus adult MNCs was next determined by actinomycin D decay studies. The half-life of M-CSF mRNA from stimulated adult MNCs was 70 +/- 7.0 minutes (n = 4) compared with 47 +/- 2.8 minutes (n = 3) from stimulated cord MNCs (mean +/- SD, P < .05). To further determine the involvement of labile protein factors in posttranscriptional regulation, cord and adult MNCs were incubated with cycloheximide (CHX; 10 micrograms/mL). There was a significant increase in the induction of M-CSF mRNA by CHX treatment in both cord and adult MNCs. The increase of M-CSF mRNA induction by CHX was 2.5 times higher in cord MNCs compared with that in adult MNCs. These results suggest that there are one or more labile proteins that regulate M-CSF transcript stability in both cord and adult MNCs.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3507-3516 ◽  
Author(s):  
KA Scoggan ◽  
AW Ford-Hutchinson ◽  
DW Nicholson

Cytokines can stimulate eosinophils to produce cysteinyl leukotrienes (LTs) in the lung that provoke tissue destruction associated with asthma. Priming of an eosinophilic substrain of HL-60 cells (HL-60#7) with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) before ionophore challenge was found to produce an apparent 45% increase in total LT production in a dose-dependent manner (ED50 = 150 pmol/L) that could be accounted for by a decrease in the time required for maximal formation of LTs. GM-CSF had no effect on the kinetic parameters of LTC4 synthase and therefore probably acts upstream of this catalytic event. Incubation with interleukin-5 (IL-5), however, had no effect on LT biosynthesis. This differential priming ability was not a consequence of different receptor populations or differences in the affinity or stability of the ligand-receptor complexes of GM-CSF and IL-5. GM-CSF and IL-5 each displayed similar populations of high-affinity binding sites and neither GM-CSF nor IL-5 were able to cross-compete for the other's receptor binding sites. Analysis of phosphotyrosine patterns suggest that IL-5 is incapable of transducing a signal in eosinophilic HL-60#7 cells even though IL-5 and GM-CSF receptors mediate signal transduction via a common beta-chain component that is also necessary for high-affinity binding. Overall, this unique system may permit the dissection of distinct events responsible for specific intracellular signals transduced separately by GM-CSF or IL-5.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1943-1951 ◽  
Author(s):  
Q. Sun ◽  
K. Jones ◽  
B. McClure ◽  
B. Cambareri ◽  
B. Zacharakis ◽  
...  

Abstract Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific  chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor  chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.


Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1491-1498 ◽  
Author(s):  
S Vadhan-Raj ◽  
HE Broxmeyer ◽  
G Spitzer ◽  
A LeMaistre ◽  
S Hultman ◽  
...  

Abstract A complete hematologic remission was achieved in a patient with therapy- related preleukemia and transfusion-dependent pancytopenia after treatment with recombinant human granulocyte-macrophage colony- stimulating factor (GM-CSF). The patient remained in remission for nearly 1 year despite the discontinuation of GM-CSF treatment. Several lines of evidence suggest that normal hematopoiesis was restored after GM-CSF treatment. First, the cytogenetic anomaly, which was present before GM-CSF, completely disappeared after three cycles of treatment. Cytogenetic conversion was documented by conventional karyotypic evaluation of mitotic bone marrow cell preparations as well as by premature chromosome condensation analysis of the nonmitotic cells of bone marrow and peripheral blood. Second, the growth pattern and cycle status of bone marrow granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells were found to be normal during remission. Third, X chromosome-linked restriction fragment length polymorphism- methylation analysis of DNA from mononuclear cells (greater than 80% lymphocytes) and mature myeloid elements showed a polyclonal pattern. These findings suggest that restoration of hematopoiesis in this patient after GM-CSF treatment may have resulted from suppression of the abnormal clone and a selective growth advantage of normal elements.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 1967-1972 ◽  
Author(s):  
Klaus Geissler ◽  
Leopold Öhler ◽  
Manuela Födinger ◽  
Eva Kabrna ◽  
Marietta Kollars ◽  
...  

Abstract In polycythemia vera (PV) erythroid colonies that grow in vitro in the absence of exogenous erythropoietin (EPO) arise from the abnormal clone that is responsible for overproduction of red blood cells. Although the mechanism of autonomous formation of burst-forming units-erythroid (BFU-E) is not fully understood, a spontaneous release of growth regulatory molecules by PV cells and/or by accessory cells is likely to be involved. Because of its cytokine synthesis inhibiting action, interleukin-10 (IL-10) could be a potentially useful molecule to modulate abnormal erythropoiesis in PV. We studied the effect of recombinant human IL-10 on the EPO-independent growth of erythroid bursts derived from peripheral blood mononuclear cells (PBMNCs) of patients with PV. IL-10 showed a profound, dose-dependent, and specific inhibitory effect on autonomous BFU-E formation. Ten nanograms per milliliter of IL-10 significantly suppressed spontaneous growth of erythroid colonies in methylcellulose in five of five PV patients tested with a mean inhibition by 81% (range, 72-94). To elucidate the possible mechanism of the inhibitory action of IL-10 we further studied the effect of anticytokine antibodies on autonomous BFU-E growth and the ability of exogenous cytokines to restore IL-10–induced suppression of erythroid colony growth. Among a panel of growth regulatory factors tested (granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-3, granulocyte colony-stimulating factor, stem cell factor, and insulin-like growth factor-1) GM-CSF was the only molecule for which both an inhibition of spontaneous BFU-E formation by its respective antibody as well as a significant restimulation of erythroid colonies in IL-10-treated cultures by exogenous addition was found. Moreover, inhibition of GM-CSF production by IL-10 was shown in PV PBMNCs at the mRNA level. Our data indicate that autonomous BFU-E growth in PV can be profoundly inhibited by IL-10 and that this inhibitory effect seems to be at least in part secondary to suppression of endogenous GM-CSF production. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Birgit Dibbert ◽  
Isabelle Daigle ◽  
Doris Braun ◽  
Corinna Schranz ◽  
Martina Weber ◽  
...  

Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document