scholarly journals Dysregulated expression of the T cell cytokine Eta-1 in CD4-8- lymphocytes during the development of murine autoimmune disease.

1990 ◽  
Vol 172 (4) ◽  
pp. 1177-1183 ◽  
Author(s):  
R Patarca ◽  
F Y Wei ◽  
P Singh ◽  
M I Morasso ◽  
H Cantor

The development of autoimmune disease in the MRL/MpJ-lpr inbred mouse strain depends upon the maturation of a subset of T lymphocytes that may cause sustained activation of immunological effector cells such as B cells and macrophages. We tested the hypothesis that abnormal effector cell activation reflects constitutive overexpression of a T cell cytokine. We found that a newly defined T cell cytokine, Eta-1, is expressed at very high levels in T cells from MRL/l mice but not normal mouse strains and in a CD4-8- 45R+ T cell clone. The Eta-1 gene encodes a secreted protein that binds specifically to macrophages, possibly via a cell adhesion receptor, resulting in alterations in the mobility and activation state of this cell type (Patarca, R., G. J. Freeman, R. P. Singh, et al. 1989. J. Exp. Med. 170:145; Singh, R. P., R. Patarca, J. Schwartz, P. Singh, and H. Cantor. 1990. J. Exp. Med. 171:1931). In addition, recent studies have indicated that Eta-1 can enhance secretion of IgM and IgG by mixtures of macrophages and B cells (Patarca, R., M. A. Lampe, M. V. Iregai, and H. Cantor, manuscript in preparation). Dysregulation of Eta-1 expression begins at the onset of autoimmune disease and continues throughout the course of this disorder. Maximal levels of Eta-1 expression and the development of severe autoimmune disease reflect the combined contribution of the lpr gene and MRL background genes.

2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3526-3526
Author(s):  
David W. Scott ◽  
Elizabeth Kadavil ◽  
Ai-Hong Zhang ◽  
Ruth A. Ettinger ◽  
Kathleen Pratt

Abstract A major obstacle in the treatment of Hemophilia A is that patients can develop an inhibitory immune response to therapeutic doses of coagulation factor VIII (fVIII). Over the last decade, we have developed a B-cell delivered gene therapy approach to prevent the development of inhibitory antibodies (“inhibitors”) in fVIII knockout mice (see Lei and Scott, Blood105: 4865, 2005). In our murine platform, activated primary spleen B cells or bone marrow cells are transduced with a retroviral vector encoding the fVIII A2 and/or C2 domain fused to an IgG heavy chain, and these cells are injected systemically into immunocompetent fVIII knockout animals. The recipients are rendered specifically tolerant to the encoded C2 and A2 domains, as evidenced by a >90% reduction of inhibitor titers, even in primed animals. To help evaluate the potential of this approach for translation, we are developing in vitro models for tolerance induction using human T-cell clones isolated from subjects with mild hemophilia A. The clones are isolated by single-cell sorting of CD4+ cells that are labeled by fluorescent HLA-DR tetramers complexed with peptides containing fVIII epitopes, followed by expansion with HLA-DR mismatched peripheral blood mononuclear cells (PBMC), phytohaemagglutinin, and interleukin-2. Our initial model utilizes a T-cell clone from an individual with mild hemophilia A due to fVIII missense genotype A2201P, which recognizes an HLA-DRA-DRB1*0101-restricted epitope within a synthetic peptide corresponding to fVIII residues 2194–2213. All of the antigen-specific T-cell clones isolated from this subject secreted interferon-gamma (IFN-γ) when stimulated by fVIII2194–2213 presented by irradiated HLA-DR-matched PBMCs or with plate-bound anti-CD3. Because of their robust response to a clinically relevant epitope in fVIII, one of these clones that expanded well in culture was chosen for initial testing of a modified gene therapy platform similar to that developed using the murine hemophilia A model. HLA-matched peripheral blood B cells were activated with antibodies to IgM or with CD40L-expressing fibroblasts and then transduced with a modified retroviral vector containing the human C2 domain sequence in-frame with the IgG sequence. These B cells were cultured with the hemophilic T-cell clone. After pre-treatment (“tolerance-induction step”), the cells were washed and then stimulated by plate-bound anti-CD3. The subsequent IFN-γ response (measured by ELIspots and ELISA) was dramatically reduced compared to the response of same T-cell clone cultured with mock-transduced B cells. The post-treatment reduction in IFN-γ secretion was equivalent to that induced after soluble anti-CD3 pre-treatment, a known method to induce T-cell anergy in vitro. Interestingly, IL-10 was produced during the tolerance induction (pre-treatment) phase, most likely from the activated B cells. Preliminary, parallel experiments with B cells transduced with a “gutless” adenovirus vector expressing C2-Ig did not result in a similar down-regulation of the T-cell response, suggesting that this non-integrating method of expressing antigens for tolerance is not effective, at least in this system. These results are the first to demonstrate in vitro modulation of cytokine responses using DR-restricted, fVIII-specific T cells from a hemophilia A subject. Further investigations using T-cell clones from hemophilic subjects with and without anti-fVIII antibodies will allow us to explore mechanisms of tolerance and may also suggest novel approaches to reduce inhibitor titers.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 291-291 ◽  
Author(s):  
Jeong Heon Yoon ◽  
Anja Schmidt ◽  
Yong Chan Kim ◽  
Christoph Koenigs ◽  
David William Scott

Abstract Hemophilia A is an X-linked disorder, in which mutations in the coagulation Factor VIII (FVIII) gene lead to a loss of FVIII function and serious bleeding episodes. These episodes can be treated with recombinant FVIII protein replacement. Unfortunately, ~25% of hemophilia A patients produce inhibitory anti-FVIII antibodies because of lack of tolerance. Thus, it is necessary to develop effective tolerogenic therapies to prevent, as well as reverse, inhibitor formation. Previously, we generated engineered antigen-specific regulatory T cells (Tregs), created by transduction of a recombinant T-cell receptor (TCR) isolated from a hemophilia A subject's T cell clone. The resulting engineered T cells bind MHC tetramers, proliferate in response to a specific FVIII epitope, and suppress effector responses to FVIII. In this study, we engineered a FVIII-specific chimeric antigen receptor (ANS8CAR) using a FVIII-specific scFv derived from a synthetic phage display library. Following initial experiments in naïve CD4 T cells, this CAR was introduced into human Tregs. Western blot and specific staining with FVIII verified CAR expression. Transduced ANS8CAR Tregs proliferated in response to FVIII and were able to suppress the proliferation of FVIII-specific T effector cells in vitro. Additionally, the proliferation of T effector cells with different FVIII domain specificity was suppressed as well when ANS8CAR-transduced Tregs were activated with FVIII. Thus, engineered cells are able to promote bystander suppression. Cytokine expression of ANS8CAR-transduced Tregs was comparable to expression of untransduced and TCR-transduced Tregs indicating that the regulatory phenotype of Tregs was not negatively influenced by ANS8CAR expression. In conclusion, CAR-transduced Tregs seem to be a promising alternative to TCR-transduced Tregs for a future tolerogenic treatment of hemophilia A patients with inhibitory FVIII-specific antibodies. Supported by NIH grants HL061883 and HL126727 (DWS), the Society of Thrombosis and Hemostasis Research, and the Günter Landbeck Excellence Award (AS). Disclosures Kim: Henry Jackson Foundation: Other: patent filed. Scott:Henry Jackson Foundation: Other: patent filed.


1988 ◽  
Vol 8 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Dale T. Umetsu ◽  
Haifa H. Jabara ◽  
Peter Hauschka ◽  
Raif S. Geha

1986 ◽  
Vol 163 (3) ◽  
pp. 713-723 ◽  
Author(s):  
D Y Leung ◽  
M C Young ◽  
N Wood ◽  
R S Geha

Two human alloreactive T cell clones were established from a one-way mixed lymphocyte culture involving two nonatopic donors, and were assessed for their capacity to induce IgE synthesis by B cells obtained from the original stimulator. The two alloreactive T cell clones studied induced IgG but not IgE synthesis in normal B cells. However, one of the two clones, clone 2H6, induced IgE synthesis in the presence of supernatants from T cell lines derived from patients with the hyper-IgE syndrome (HIE), and enriched for T cells bearing receptors for IgE. These supernatants by themselves caused no IgE synthesis in nonatopic B cells. The potentiating factors in these supernatants were shown to bind to IgE. Time sequence experiments indicated that interaction of the B cells with the alloreactive clone 2H6 renders them responsive to the action of the IgE-potentiating factors. These results indicate that induction of IgE synthesis in normal B cells involves at least two sequential T cell derived signals. Furthermore, T cell clones are heterogenous in their capacity to provide these signals.


1986 ◽  
Vol 164 (5) ◽  
pp. 1440-1454 ◽  
Author(s):  
K B Cease ◽  
G Buckenmeyer ◽  
I Berkower ◽  
J York-Jolley ◽  
J A Berzofsky

Although studies of the association of antigen with APC have been complicated by antigen-processing requirements, recent studies have suggested that immunologically relevant antigen should be present on the APC surface. Nevertheless, blocking of antigen presentation with antibody to the antigen has not been demonstrable in most systems. To study this problem we developed a system using avidin to block presentation of amino-terminal biotinylated synthetic peptide 132-146 of sperm whale myoglobin (B132) to a murine T cell clone specific for this site in association with I-Ed. greater than 95% specific inhibition was observed with doses of B132 equipotent to unmodified peptide. Specific blocking could be observed: (a) after pulsing APC with antigen, washing, and incubating for a chase period of 8-16 h before addition of avidin and T cells to assure adequate time for intracellular trafficking and maximal display of antigen on the cell surface, or (b) when monensin is present during the antigen pulse to inhibit such traffic. Therefore, the inhibition appeared to be occurring at the cell surface unless dissociation and reassociation were constantly occurring. To distinguish these, B10.GD APC (I-Ed-negative) were pulsed with antigen and cocultured with B10.D2 APC (I-Ed-positive). No detectable antigen presentation resulted. Thus, minimal dissociation and reassociation between antigen and APC occurs and, consequently, blocking by extracellular solution-phase binding of avidin to antigen is unlikely. Taken together, these data suggest that the blocking is occurring at the cell surface. Thus, under physiologic conditions, immunologically relevant antigen necessary for T cell activation appears to be present on the APC surface and is freely accessible to macromolecules the size of avidin. These findings hold specific implications for models of antigen presentation for T cell recognition.


1984 ◽  
Vol 159 (5) ◽  
pp. 1397-1412 ◽  
Author(s):  
J Kaye ◽  
C A Janeway

We characterize a monoclonal antibody directed against the antigen/Ia receptor of a cloned helper T cell line that induced T cell clone proliferation and T cell clone-dependent B cell proliferation at antibody concentrations as low as 10(-11) M. A Fab fragment of this antibody was not stimulatory, implicating cross-linking of antigen receptors as the primary signal for T cell activation. The Fab fragment inhibited activation of this clone by both allogeneic Ia and antigen plus self-Ia, but not by the nonspecific stimulators concanavalin A and rabbit anti-mouse brain serum. This strongly supports the hypothesis that a single molecule mediates both self-Ia plus antigen and non-self-Ia recognition. This molecule is presumably the disulfide-linked heterodimer comprised of 42,000 mol wt acidic and basic subunits precipitated by this monoclonal antibody. The cell surface and internal precursor forms of this protein are also identified. In addition, the response to allogeneic Ia stimulation was more readily inhibited by the Fab fragment than was the response to antigen plus self-Ia, suggesting that alloreactivity reflects a low affinity interaction with a ligand represented at high frequency on the stimulatory cell.


Sign in / Sign up

Export Citation Format

Share Document