scholarly journals Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions.

1992 ◽  
Vol 176 (5) ◽  
pp. 1311-1317 ◽  
Author(s):  
J Carlson ◽  
M Wahlgren

Herein we describe an assay that was developed to quantitate the binding of normal red blood cells (RBC), labeled with carboxy fluorescein diacetate (C-FDA), to rosetting Plasmodium falciparum-infected RBC. The binding of RBC obtained from various animal species or humans to different strains or clones of rosetting P. falciparum-infected RBC was studied. A strain-specific preference of rosetting was observed for either blood group A/AB or B/AB RBC for all parasites tested. The higher affinity of rosette binding of blood group A, B, or AB vs. O RBC was reflected in larger rosettes when a given parasite was grown in RBC of the preferred blood group. The small size of the rosettes formed when P. falciparum was grown in blood group O RBC may be the in vitro correlate of the relative protection against cerebral malaria afforded by belonging to blood group O rather than to blood group A or B. Rosettes of a blood group A-preferring parasite could be completely disrupted by heparin only when grown in blood group O or B RBC, but not when grown in blood group A RBC. Similarly, the rosettes of a blood group B-preferring parasite could be more easily disrupted by heparin when grown in blood group O or A RBC than when grown in blood group B RBC. Several different saccharides inhibited rosetting of group O RBC, including two monosaccharides that are basic components of heparin. The rosetting of the same parasites grown in blood group A or B RBC was less sensitive to heparin and was specifically inhibited only by the terminal mono- and trisaccharides of the A and the B blood group antigens, the H disaccharide, and fucose. Our results suggest that rosetting is mediated by multiple lectin-like interactions, the usage of which rely on the parasite phenotype and whether the receptors are present on the host cell or not.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
S. Samra ◽  
M. Habeb ◽  
R. Nafae

Abstract Background A few people infected by the coronavirus become seriously ill, while others show little to no signs of the symptoms, or are asymptomatic. Recent researches are pointing to the fact that the ABO blood group might play an important role in a person’s susceptibility and severity of COVID-19 infection. Aim of the study: try to understand the relationship between ABO groups and COVID-19 (susceptibility and severity). Results A total of (507) patients were included in this study. The study population was divided based on the ABO blood group into types A+, A−, B+, AB, O+, and O−. Blood group A was associated with high susceptibility of infection: group A, 381 (75.1%); and less common in group O, 97 (19.2%), group B, 18 (3.5%), and group AB, 11 (2.2%). The severity of COVID-19 infection was common in non-blood group O where (20 (7.1%), 4 (26.7%), 2 (11%), and 1 (9%) in type A+, A−, B+, and AB, respectively), while in type O 3.1%. And mechanically ventilated patients were 22 (5.9%), 2 (13.4%), 2 (11.1%), and 1 (1%). Mortality was high in blood groups A and B, 16 (4.37%) and 1 (5.5%), respectively, while in blood group O, it was 1%. Conclusion The incidence, severity, and mortality of COVID-19 were common in non-blood group O. While blood group O was protected against COVID-19.


2001 ◽  
Vol 69 (9) ◽  
pp. 5849-5856 ◽  
Author(s):  
Andreas Heddini ◽  
Fredrik Pettersson ◽  
Oscar Kai ◽  
Juma Shafi ◽  
Jack Obiero ◽  
...  

ABSTRACT The sequestration of Plasmodium falciparum-infected erythrocytes (pRBC) away from the peripheral circulation is a property of all field isolates. Here we have examined the pRBC of 111 fresh clinical isolates from children with malaria for a number of adhesive features in order to study their possible coexpression and association with severity of disease. A large number of adhesion assays were performed studying rosetting, giant rosetting, and binding to CD36, intercellular adhesion molecule 1, platelet endothelial cell adhesion molecule 1, thrombospondin, heparin, blood group A, and immunoglobulins. Suspension assays were performed at the actual parasitemia of the isolate, while all the static adhesion assays were carried out at an equal adjusted parasitemia. The ability to bind to multiple receptors, as well as the ability to form rosettes and giant rosettes, was found to be more frequent among isolates from children with severe versus mild malaria (P = 0.0015). Rosettes and giant rosettes were more frequent for children with severe malaria, and the cell aggregates were larger and tighter, than for those with mild disease (P = 0.0023). Binding of immunoglobulins (97% of isolates) and of heparin (81% of isolates) to infected erythrocytes was common, and binding to heparin and blood group A was associated with severity of disease (P = 0.011 andP = 0.031, respectively). These results support the idea that isolates that bind to multiple receptors are involved in the causation of severe malaria and that several receptor-ligand interactions work synergistically in bringing about severe disease.


1965 ◽  
Vol 121 (6) ◽  
pp. 1039-1050 ◽  
Author(s):  
H. A. Thiede ◽  
J. W. Choate ◽  
H. H. Gardner ◽  
H. Santay

The chorionic villi of term placentas were examined for A and B blood group substance using the IF technique with heterologous and homologous antisera. No specific fluorescence was found in either the villous trophoblast or vessels of the chorionic villi. The implications of these findings in relation to the question of trophoblastic antigenicity are discussed.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Pontus Hedberg ◽  
Madle Sirel ◽  
Kirsten Moll ◽  
Mpungu Steven Kiwuwa ◽  
Petter Höglund ◽  
...  

Abstract Background The histo-blood group ABO system has been associated with adverse outcomes in COVID-19, thromboembolic diseases and Plasmodium falciparum malaria. An integral part of the severe malaria pathogenesis is rosetting, the adherence of parasite infected red blood cells (RBCs) to uninfected RBCs. Rosetting is influenced by the host’s ABO blood group (Bg) and rosettes formed in BgA have previously been shown to be more resilient to disruption by heparin and shield the parasite derived surface antigens from antibodies. However, data on rosetting in weak BgA subgroups is scarce and based on investigations of relatively few donors. Methods An improved high-throughput flow cytometric assay was employed to investigate rosetting characteristics in an extensive panel of RBC donor samples of all four major ABO Bgs, as well as low BgA expressing samples. Results All non-O Bgs shield the parasite surface antigens from strain-specific antibodies towards P. falciparum erythrocyte membrane protein 1 (PfEMP1). A positive correlation between A-antigen levels on RBCs and rosette tightness was observed, protecting the rosettes from heparin- and antibody-mediated disruption. Conclusions These results provide new insights into how the ABO Bg system affects the disease outcome and cautions against interpreting the results from the heterogeneous BgA phenotype as a single group in epidemiological and experimental studies. Graphical Abstract


2000 ◽  
Vol 6 (1) ◽  
pp. 156-158
Author(s):  
T. Pramanik ◽  
S. Pramanik

The frequencies of ABO and rhesus blood groups vary from one population to another. We studied blood group distribution in 120 Nepalese students; 34% were blood group A, 29% group B, 4% group AB and 32.5% group O. The frequency of Rh-negative blood was 3.33% and Rh-positive 96.66%


1988 ◽  
Vol 256 (2) ◽  
pp. 661-664 ◽  
Author(s):  
M S Stoll ◽  
T Mizuochi ◽  
R A Childs ◽  
T Feizi

Conditions have been established for the rapid and efficient conjugation of reducing oligosaccharides (di- to deca-saccharides) to dipalmitoyl phosphatidylethanolamine. The resulting neoglycolipids derived from several naturally occurring oligosaccharides and a series of N-linked high-mannose-type oligosaccharides released by hydrazinolysis from RNAase B showed specific and potent reactivities, as appropriate, with monoclonal antibodies to blood group Lewis(b), blood group A or a stage-specific embryonic (SSEA-1) antigen, or the lectin concanavalin A.


2008 ◽  
Vol 41 (02) ◽  
pp. 138-140
Author(s):  
Rasoul Gheisari ◽  
Mehdi Ghoreishian ◽  
Movahedian Bijan ◽  
Roozbehi Amrolah

ABSTRACT Background: Blood group is a genetic characteristic which is associated with some diseases and deformities. Multifactorial characteristics of facial development make it difficult to predict a genetic pattern in a specific maxillofacial deformity, but epidemiological evaluations can reveal relationships between such deformities and some genetic characteristics or accompanied diseases, and this will help to recognise and treat them. The aim of this study is evaluation of the relationship between blood groups and maxillofacial deformities. Materials and Methods: In this study, blood groups of 190 patients with maxillofacial deformities who had had orthognathic surgery in Alzahra hospital, Isfahan, were compared with the general Iranian population. Results: Among 190 patients, 93 cases (49%) were men and 97 cases (51%) were women. Fifteen cases (8%) were < 20 years old, 130 cases (68%) were 20-30 years old, and the others (45 cases, 24%) were > 30 years old. The blood group distribution in our samples was as follows: blood group O = 76 cases (40%), blood group A = 58 cases (30%), blood group B = 41 cases (22%), and blood group AB = 15 cases (8%). Among these patients, 31 cases (16%) had maxillary deformities and 27 cases (14%) suffered from mandibular deformities while the other 132 cases (70%) had bimaxillary problems. The Chi-square test showed statistically significant differences between the blood group distribution of the patients of this study and the normal Iranian population ( P < 0.001). Conclusion: It was shown that among different blood groups; those with blood group B have a greater likelihood of association with maxillofacial deformities. On the other hand, the probability of the association of such deformities was the least with blood group A.


1989 ◽  
Vol 37 (7) ◽  
pp. 1153-1155 ◽  
Author(s):  
T F Orntoft ◽  
K Nielsen

Intratumor heterogeneity is a major problem in immunodiagnosis and treatment of carcinomas. To elucidate the well-known heterogeneity in transitional-cell carcinomas of the ability to express blood group ABO isoantigens, a stereological estimate of the mean nuclear volume in areas expressing blood group antigens was compared to the estimate from areas of identical pathological grade at which antigen expression was deleted. Four microscopic fields were examined from antigen-positive and four from antigen-negative areas in sections from 21 blood group O and 20 blood group A individuals. The sections were stained before examination by an indirect peroxidase method using monoclonal anti-H and anti-A antibodies. The mean nuclear volume increased, as expected, with increasing pathological grade. In blood group O individuals the mean nuclear volume was 241.5 microns 3 in antigen-positive areas and 338.2 microns 3 in antigen-negative areas (2p less than 0.0005) of identical pathological grade. In group A individuals the mean nuclear volume was 217.1 microns 3 in positive areas and 351.1 microns 3 in corresponding negative areas (2p less than 0.0025). The variation in volume parameter was essentially caused by a true variation between tumors (greater than 82%). The results indicate a complex biological mechanism associated with the cellular ability to express blood group antigens.


Sign in / Sign up

Export Citation Format

Share Document