scholarly journals T cell genetic background determines default T helper phenotype development in vitro.

1995 ◽  
Vol 181 (2) ◽  
pp. 713-721 ◽  
Author(s):  
C S Hsieh ◽  
S E Macatonia ◽  
A O'Garra ◽  
K M Murphy

A host's ability to resist certain pathogens such as Leishmania major can depend upon the phenotype of T helper (Th) subset that develops. Different murine genetic backgrounds are known to significantly alter the direction of Th subset development, although the cellular basis of this influence is poorly understood. To examine the basis of this effect we used an in vitro alpha/beta-T cell receptor (TCR) transgenic system for analysis of Th phenotype development. To control for TCR usage, we derived the DO11.10 alpha/beta-TCR transgene in several genetic backgrounds. Our findings suggest that the effects of genetic background on Th phenotype development reside within the T cell, and not the antigen-presenting cell compartment. Transgenic T cells from both the B10.D2 and BALB/c backgrounds showed development toward either the Th1 or Th2 phenotype under the strong directing influence of interleukin (IL) 12 and IL4, respectively. However, when T cells were activated in vitro under neutral conditions in which exogenous cytokines were not added, B10.D2-derived T cells acquired a significantly stronger Th1 phenotype than T cells from the BALB/c background, correspondent with in vivo Th responses to Leishmania in these strains. Importantly, these cytokine differences resulted in distinct functional properties, because B10.D2- but not BALB/c-derived T cells could induce macrophage production of nitric oxide, an important antimicrobial factor. Thus, the genetically determined default Th phenotype development observed in vitro may correspond to in vivo Th subset responses for pathogens such as Leishmania which do not initiate strong Th phenotype-directing signals.

Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2084-2093 ◽  
Author(s):  
Alexander D. McLellan ◽  
Michaela Kapp ◽  
Andreas Eggert ◽  
Christian Linden ◽  
Ursula Bommhardt ◽  
...  

Abstract Mouse spleen contains CD4+, CD8α+, and CD4−/CD8α− dendritic cells (DCs) in a 2:1:1 ratio. An analysis of 70 surface and cytoplasmic antigens revealed several differences in antigen expression between the 3 subsets. Notably, the Birbeck granule–associated Langerin antigen, as well as CD103 (the mouse homologue of the rat DC marker OX62), were specifically expressed by the CD8α+ DC subset. All DC types were apparent in the T-cell areas as well as in the splenic marginal zones and showed similar migratory capacity in collagen lattices. The 3 DC subtypes stimulated allogeneic CD4+ T cells comparably. However, CD8α+ DCs were very weak stimulators of resting or activated allogeneic CD8+ T cells, even at high stimulator-to-responder ratios, although this defect could be overcome under optimal DC/T cell ratios and peptide concentrations using CD8+ F5 T-cell receptor (TCR)–transgenic T cells. CD8α− or CD8α+DCs presented alloantigens with the same efficiency for lysis by cytotoxic T lymphocytes (CTLs), and their turnover rate of class I–peptide complexes was similar, thus neither an inability to present, nor rapid loss of antigenic complexes from CD8α DCs was responsible for the low allostimulatory capacity of CD8α+ DCs in vitro. Surprisingly, both CD8α+ DCs and CD4−/CD8− DCs efficiently primed minor histocompatibility (H-Y male antigen) cytotoxicity following intravenous injection, whereas CD4+ DCs were weak inducers of CTLs. Thus, the inability of CD8α+ DCs to stimulate CD8+ T cells is limited to certain in vitro assays that must lack certain enhancing signals present during in vivo interaction between CD8α+ DCs and CD8+ T cells.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Reza Nejati ◽  
Lauren Shaw ◽  
...  

Peripheral T cell lymphomas (PTCLs) are generally chemotherapy resistant and have a poor prognosis. The lack of targeted immunotherapeutic approaches for T cell malignancies results in part from potential risks associated with targeting broadly expressed T cell markers, namely T cell depletion and clinically significant immune compromise. The knowledge that the T cell receptor (TCR) β chain in human α/β TCRs are grouped into Vβ families that can each be targeted by a monoclonal antibody can therefore be exploited for therapeutic purposes. Here, we develop a flexible approach for targeting TCR Vβ families by engineering T cells to express a chimeric CD64 protein that acts as a high affinity immune receptor (IR). We found that CD64 IR-modified T cells can be redirected with precision to T cell targets expressing selected Vβ families by combining CD64 IR-modified T cells with a monoclonal antibody directed toward a specific TCR Vβ family in vitro and in vivo. These findings provide proof of concept that TCR Vβ-family-specific T cell lysis can be achieved using this novel combination cell–antibody platform and illuminates a path toward high precision targeting of T cell malignancies without substantial immune compromise.


2002 ◽  
Vol 22 (15) ◽  
pp. 5419-5433 ◽  
Author(s):  
Susanne M. A. Lens ◽  
Takao Kataoka ◽  
Karen A. Fortner ◽  
Antoine Tinel ◽  
Isabel Ferrero ◽  
...  

ABSTRACT The caspase 8 inhibitor c-FLIPL can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIPL in the T-cell compartment (c-FLIPL Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIPL Tg mice. In contrast, activation-induced cell death of T cells in c-FLIPL Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIPL Tg mice differed from Fas-deficient mice by showing no accumulation of B220+ CD4− CD8− T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIPL Tg mice. Thus, a major role of c-FLIPL in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3323-3323
Author(s):  
Philipp J. Jost ◽  
Uta Ferch ◽  
Stephanie Weiss ◽  
Stephanie Leeder ◽  
Olaf Gross ◽  
...  

Abstract Development of immature T cells in the thymus requires signals through the clonotypic T cell receptor (TCR). Thymocytes expressing a functionally inactive or autoreactive TCR are deleted via apoptosis (negative selection). Thymocytes expressing a functionally active but not autoreactive TCR are selected through inhibition of cell death (positive selection). Deregulation of this process is likely to result in autoimmunity or lymphomagenesis of T cells. The intracellular mechanisms by which the balance between TCR-dependent survival and apoptosis are regulated are largely unknown. A central regulator of survival and apoptosis in the immune system is the transcription factor NF-κB. Activation of NF-κB in mature T-cells requires the adaptor proteins Bcl10 and Malt1. Using gene-targeted mice deficient for Bcl10 or Malt1, we show that Bcl10 and Malt1 are also required for TCR-induced NF-κB activation in immature T cells. Furthermore, to elucidate the process of T cell selection within the thymus, we have crossed Bcl10 or Malt1 deficient mice into mice with genetic backgrounds expressing defined TCR transgenes. Using specific peptide agonists of these TCR transgenes, we show that neither in vivo nor in vitro development into single positive (SP) CD4 or CD8 positive T cells is altered in Bcl10 or Malt1 deficient mice. Absolute numbers and ratio of SP T cells found within the thymus or in peripheral lymphnodes of transgenic animals are normal. These findings indicate that Bcl10 and Malt1 activate NF-κB in thymocytes but are dispensable for maturation of immature T cells in this model system.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Arvind Batra ◽  
Besir Okur ◽  
Rainer Glauben ◽  
Ulrike Erben ◽  
Jakob Ihbe ◽  
...  

Abstract Besides being mandatory in the metabolic system, adipokines like leptin directly affect immunity. Leptin was found to be necessary in T helper 1 (Th1)-dependent inflammatory processes, whereas effects on Th2 cells are rarely understood. Here, we focused on leptin in T-helper cell polarization and in Th2-mediated intestinal inflammation in vivo. The induction of cytokine-producing Th1 or Th2 cells from naive CD4+ T cells under polarizing conditions in vitro was generally decreased in cells from leptin-deficient ob/ob mice compared with wild-type mice. To explore the in vivo relevance of leptin in Th2-mediated inflammation, the model of oxazolone-induced colitis was employed in wild-type, ob/ob, and leptin-reconstituted ob/ob mice. Ob/ob mice were protected, whereas wild-type and leptin-reconstituted ob/ob mice developed colitis. The disease severity went in parallel with local production of the Th2 cytokine IL-13. A possible explanation for the protection of ob/ob mice in Th1- as well as in Th2-dependent inflammation is provided by a decreased expression of the key transcription factors for Th1 and Th2 polarization, T-bet and GATA-3, in naive ob/ob T cells. In conclusion, these results support the regulatory function of the adipokine leptin within T-cell polarization and thus in the acquired immune system and support the concept that there is a close interaction with the endocrine system.


2004 ◽  
Vol 72 (12) ◽  
pp. 7240-7246 ◽  
Author(s):  
Marion Pepper ◽  
Florence Dzierszinski ◽  
Amy Crawford ◽  
Christopher A. Hunter ◽  
David Roos

ABSTRACT The study of the immune response to Toxoplasma gondii has provided numerous insights into the role of T cells in resistance to intracellular infections. However, the complexity of this eukaryote pathogen has made it difficult to characterize immunodominant epitopes that would allow the identification of T cells with a known specificity for parasite antigens. As a consequence, analysis of T-cell responses to T. gondii has been based on characterization of the percentage of T cells that express an activated phenotype during infection and on the ability of these cells to produce cytokines in response to complex mixtures of parasite antigens. In order to study specific CD4+ T cells responses to T. gondii, recombinant parasites that express a truncated ovalbumin (OVA) protein, in either a cytosolic or a secreted form, were engineered. In vitro and in vivo studies reveal that transgenic parasites expressing secreted OVA are able to stimulate T-cell receptor-transgenic OVA-specific CD4+ T cells to proliferate, express an activated phenotype, and produce gamma interferon (IFN-γ). Furthermore, the adoptive transfer of OVA-specific T cells into IFN-γ−/− mice provided enhanced protection against infection with the OVA-transgenic (but not parental) parasites. Together, these studies establish the utility of this transgenic system to study CD4+-T-cell responses during toxoplasmosis.


1988 ◽  
Vol 168 (6) ◽  
pp. 2231-2249 ◽  
Author(s):  
M L Toribio ◽  
A de la Hera ◽  
J Borst ◽  
M A Marcos ◽  
C Márquez ◽  
...  

In this report, we have undertaken the phenotypic, functional and molecular characterization of a minor (less than 5%) subpopulation of adult thymocytes regarded as the earliest intrathymic T-cell precursors. Pro-T cells were immunoselected and shown to express different hematopoietic cell markers (CD45, CD38, CD7, CD5) and some activation-related molecules (4F2, Tr, HLA class II), but lack conventional T cell antigens (CD2-1-3-4-8-). TCR-gamma RNA messages are already expressed at this early ontogenic stage, while alpha and beta chain TCR genes remain in germline configuration. In vitro analyses of the growth requirements of pro-T cells demonstrated the involvement of the IL-2 pathway in promoting their proliferation and differentiation into CD3+ CD4+ or CD8+ mature thymocytes. Moreover, during the IL-2-mediated maturation process rearrangements and expression of both alpha and beta chain TCR genes occurred, and resulted in the acquisition of alpha/beta as well as gamma/delta (either disulphide-linked or non-disulphide-linked) heterodimeric TCR among the pro-T cell progeny.


Sign in / Sign up

Export Citation Format

Share Document