scholarly journals T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides.

1996 ◽  
Vol 184 (1) ◽  
pp. 183-189 ◽  
Author(s):  
S L Larsen ◽  
L O Pedersen ◽  
S Buus ◽  
A Stryhn

Endocytosed protein antigens are believed to be fragmented in what appears to be a balance between proteolysis and MHC-mediated epitope protection, and the resulting peptide-MHC complexes are transported to the surface of the antigen-presenting cells (APC) and presented to T cells. The events that lead to antigenic peptide generation and the compartments where antigen processing takes place remains somewhat enigmatic. The importance of intracellular antigen processing has been well established; however, it is unclear whether additional processing occurs at the APC surface. To follow antigen processing, we have identified a pair of T cell hybridomas that recognize a long vs. a short version of the same epitope. We have used prefixed APC and various protease inhibitors to demonstrate that the APC surface has a considerable potential for antigen processing. Specific antibodies further identified the exopeptidase Aminopeptidase N (APN, CD13) as one of the enzymes involved in the observed cell-surface antigen processing. The NH2-terminal end of the longer peptide could, even while bound to major histocompatibility complex (MHC) class II molecules, be digested by APN with dramatic consequences for T cell antigen recognition. This could be demonstrated both in cell-free systems using purified reagents and in cellular systems. Thus, MHC class II and APN may act in concert to generate the final T cell epitopes.

1994 ◽  
Vol 180 (5) ◽  
pp. 1911-1920 ◽  
Author(s):  
R S Yeung ◽  
J M Penninger ◽  
T M Kündig ◽  
Y Law ◽  
K Yamamoto ◽  
...  

To reconstitute the human immune system in mice, transgenic mice expressing human CD4 and human major histocompatibility complex (MHC) class II (DQw6) molecules in an endogenous CD4- and CD8-deficient background (mCD4/8-/-), after homologous recombination, have been generated. We report that expression of human CD4 molecule in mCD4/8-/- mice rescues thymocyte development and completely restores the T cell compartment in peripheral lymphoid organs. Upon vesicular stomatitis virus (VSV) challenge, the reconstituted mature T cell population effectively provide T help to B cells in immunoglobulin class switching from IgM to specific IgG-neutralizing antibodies. Human CD4+DQw6+ double transgenic mice are tolerant to DQw6 and the DQw6 molecule functions in antigen presentation, effectively generating a human MHC class II-restricted T cell response to streptococcal M6C2 peptide. These data show that both the hCD4 and DQw6 molecules are functional in mCD4/8-/- mice, fully and stably reconstituting this limb of the human immune system in mice. This animal model provides a powerful in vivo tool to dissect the human CD4-human class II MHC interaction, especially its role in human autoimmune diseases, superantigen-mediated diseases, and acquired immunodeficiency syndrome (AIDS).


1996 ◽  
Vol 183 (3) ◽  
pp. 1083-1092 ◽  
Author(s):  
R Wen ◽  
G A Cole ◽  
S Surman ◽  
M A Blackman ◽  
D L Woodland

Recent studies have shown that only a subset of major histocompatibility complex (MHC) class II molecules are able to present bacterial superantigens to T cells, leading to the suggestion that class-II associated peptides may influence superantigen presentation. Here, we have assessed the potential role of peptides on superantigen presentation by (a) analyzing the ability of superantigens to block peptide-specific T cell responses and (b) analyzing the ability of individual peptides to promote superantigen presentation on I-Ab-expressing T2 cells that have a quantitative defect in antigen processing. A series of peptides is described that specifically promote either toxic shock syndrome toxin (TSST) 1 or staphylococcal enterotoxin A (SEA) presentation. Whereas some peptides promoted the presentation of TSST-1 (almost 5,000-fold in the case of one peptide), other peptides promoted the presentation of SEA. These data demonstrate that MHC class II-associated peptides differentially influence the presentation of bacterial superantigens to T cells.


1993 ◽  
Vol 178 (5) ◽  
pp. 1675-1680 ◽  
Author(s):  
H Deng ◽  
R Apple ◽  
M Clare-Salzler ◽  
S Trembleau ◽  
D Mathis ◽  
...  

How peptide-major histocompatibility complex (MHC) class II complexes are naturally generated is still unknown, but accumulating evidence suggests that unfolding proteins or long peptides can become bound to class II molecules at the dominant determinant before proteolytic cleavage. We have compared the immunogenicity of hen egg-white lysozyme (HEL) in nonobese diabetic (NOD), (NOD x BALB/c)F1, and E(d) alpha transgenic NOD mice. We find that a response to the subdominant ANOD-restricted determinant disappears upon introduction of an E(d) molecule, and is restored when scission of HEL separates this determinant from its adjoining, competitively dominant, E(d)-restricted determinant. This suggests that the E(d) molecule binds and protects its dominant determinant on a long peptide while captured neighboring determinants are lost during proteolysis. These results provide clear evidence for "determinant capture" as a mechanism of determinant selection during antigen processing and a possible explanation for MHC-protective effects in insulin-dependent diabetes mellitus.


1998 ◽  
Vol 188 (5) ◽  
pp. 819-831 ◽  
Author(s):  
Danielle Lankar ◽  
Volker Briken ◽  
Kristin Adler ◽  
Peter Weiser ◽  
Sylvanie Cassard ◽  
...  

Stimulation of CD4+ helper T lymphocytes by antigen-presenting cells requires the degradation of exogenous antigens into antigenic peptides which associate with major histocompatibility complex (MHC) class II molecules in endosomal or lysosomal compartments. B lymphocytes mediate efficient antigen presentation first by capturing soluble antigens through clonally distributed antigen receptors (BCRs), composed of membrane immunoglobulin (Ig) associated with Ig-α/Ig-β heterodimers which, second, target antigens to MHC class II–containing compartments. We report that antigen internalization and antigen targeting through the BCR or its Ig-α–associated subunit to newly synthesized class II lead to the presentation of a large spectrum of T cell epitopes, including some cryptic T cell epitopes. To further characterize the intracellular mechanisms of BCR-mediated antigen presentation, we used two complementary experimental approaches: mutational analysis of the Ig-α cytoplasmic tail, and overexpression in B cells of dominant negative syk mutants. Thus, we found that the syk tyrosine kinase, an effector of the BCR signal transduction pathway, is involved in the presentation of peptide– MHC class II complexes through antigen targeting by BCR subunits.


1991 ◽  
Vol 173 (3) ◽  
pp. 779-782 ◽  
Author(s):  
Y Chvatchko ◽  
H R MacDonald

Recent studies indicate that both CD4+ and CD8+ T lymphocytes proliferate in vitro in response to Mls-1a-encoded determinants. Using both immunogenetic and antibody blocking approaches we show here that Mls-1a responses of both subsets require expression of major histocompatibility complex (MHC) class II molecules (I-A and/or I-E) by the stimulator cells. Furthermore, CD8+ T cell responses to Mls-1a/class II MHC do not require (and are in fact inhibited by) the presence of functional CD8 molecules. Taken together, our data underscore the dramatic differences between CD8+ T cell responses to conventional peptide antigens as opposed to "superantigens" such as Mls-1a.


1997 ◽  
Vol 186 (8) ◽  
pp. 1223-1232 ◽  
Author(s):  
Thomas Brocker

Thymic T cell development is controlled by T cell receptor (TCR)–major histocompatibility complex (MHC) interactions, whereas a further dependence of peripheral mature T cells on TCR–MHC contact has not been described so far. To study this question, CD4 T cell survival was surveyed in mice lacking MHC class II expression and in mice expressing MHC class II exclusively on dendritic cells. Since neither of these mice positively select CD4 T cells in the thymus, they were grafted with MHC class II–positive embryonic thymic tissue, which had been depleted of bone marrow derived cells. Although the thymus grafts in both hosts were repopulated with host origin thymocytes of identical phenotype and numbers, an accumulation of CD4+ T cells in peripheral lymphoid organs could only be observed in mice expressing MHC class II on dendritic cells, but not in mice that were completely MHC class II deficient. As assessed by histology, the accumulating peripheral CD4 T cells were found to be in close contact with MHC class II+ dendritic cells, suggesting that CD4 T cells need peripheral MHC class II expression for survival and that class II+ dendritic cells might play an important role for the longevity of CD4 T cells.


2001 ◽  
Vol 193 (10) ◽  
pp. 1179-1188 ◽  
Author(s):  
Phillip Wong ◽  
Gregory M. Barton ◽  
Katherine A. Forbush ◽  
Alexander Y. Rudensky

Intrathymic self-peptide–major histocompatibility complex class II (MHC) molecules shape the T cell repertoire through positive and negative selection of immature CD4+CD8+ thymocytes. By analyzing the development of MHC class II–restricted T cell receptor (TCR) transgenic T cells under conditions in which the endogenous peptide repertoire is altered, we show that self-peptide–MHC complexes are also involved in setting T cell activation thresholds. This occurs through changes in the expression level of molecules on thymocytes that influence the sensitivity of TCR signaling. Our results suggest that the endogenous peptide repertoire modulates T cell responsiveness in the thymus in order to enforce tolerance to self-antigens.


1995 ◽  
Vol 182 (6) ◽  
pp. 1793-1799 ◽  
Author(s):  
C A Siegrist ◽  
E Martinez-Soria ◽  
I Kern ◽  
B Mach

Presentation of exogenous protein antigens to T lymphocytes is based on the intersection of two complex pathways: (a) synthesis, assembly, and transport of major histocompatibility complex (MHC) class II-invariant chain complexes from the endoplasmic reticulum to a specialized endosomal compartment, and (b) endocytosis, denaturation, and proteolysis of antigens followed by loading of antigenic peptides onto newly synthesized MHC class II molecules. It is believed that expression of MHC class II heterodimers, invariant chain and human leukocyte antigen-DM is both necessary and sufficient to reconstitute a functional MHC class II loading compartment in antigen-presenting cells. Expression of each of these essential molecules is under the control of the MHC class II transactivator CIITA. Unexpectedly, however, whereas interferon gamma stimulation does confer effective antigen-processing function to nonprofessional antigen presenting cells, such as melanoma cells, expression of the CIITA transactivator alone is not sufficient. Activation of antigen-specific T cells thus requires additional CIITA-independent factor(s), and such factor(s) can be induced by interferon gamma.


1998 ◽  
Vol 187 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Fred Lühder ◽  
Jonathan Katz ◽  
Christophe Benoist ◽  
Diane Mathis

Insulin-dependent diabetes is heavily influenced by genes encoded within the major histocompatibility complex (MHC), positively by some class II alleles and negatively by others. We have explored the mechanism of MHC class II–mediated protection from diabetes using a mouse model carrying the rearranged T cell receptor (TCR) transgenes from a diabetogenic T cell clone derived from a nonobese diabetic mouse. BDC2.5 TCR transgenics with C57Bl/6 background genes and two doses of the H-2g7 allele exhibited strong insulitis at ∼3 wk of age and most developed diabetes a few weeks later. When one of the H-2g7 alleles was replaced by H-2b, insulitis was still severe and only slightly delayed, but diabetes was markedly inhibited in both its penetrance and time of onset. The protective effect was mediated by the Aβb gene, and did not merely reflect haplozygosity of the Aβg7 gene. The only differences we observed in the T cell compartments of g7/g7 and g7/b mice were a decrease in CD4+ cells displaying the transgene-encoded TCR and an increase in cells expressing endogenously encoded TCR α-chains. When the synthesis of endogenously encoded α-chains was prevented, the g7/b animals were no longer protected from diabetes. g7/b mice did not have a general defect in the production of Ag7-restricted T cells, and antigen-presenting cells from g7/b animals were as effective as those from g7/g7 mice in stimulating Ag7-restricted T cell hybridomas. These results argue against mechanisms of protection involving clonal deletion or anergization of diabetogenic T cells, or one depending on capture of potentially pathogenic Ag7-restricted epitopes by Ab molecules. Rather, they support a mechanism based on MHC class II–mediated positive selection of T cells expressing additional specificities.


1994 ◽  
Vol 180 (5) ◽  
pp. 1921-1929 ◽  
Author(s):  
N Labrecque ◽  
J Thibodeau ◽  
W Mourad ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) stimulate a high proportion of T cells expressing specific variable regions of the T cell receptor (TCR) beta chain. Although most alleles and isotypes bind SAGs, polymorphisms of major histocompatibility complex (MHC) class II molecules affect their presentation to T cells. This observation has raised the possibility that a TCR-MHC class II interaction can occur during this recognition process. To address the importance of such interactions during SAG presentation, we have used a panel of murine T cell hybridomas that respond to the bacterial SAG Staphylococcal enterotoxin B (SEB) and to the retroviral SAG Mtv-7 when presented by antigen-presenting cells (APCs) expressing HLA-DR1. Amino acid substitutions of the putative TCR contact residues 59, 64, 66, 77, and 81 on the DR1 beta chain showed that these amino acids are critical for recognition of the SAG SEB by T cells. TCR-MHC class II interactions are thus required for T cell recognition of SAG. Moreover, Mtv-7 SAG recognition by the same T cell hybridomas was not affected by these mutations, suggesting that the topology of the TCR-MHC class II-SAG trimolecular complex could be different from one TCR to another and from one SAG to another.


Sign in / Sign up

Export Citation Format

Share Document