scholarly journals Analysis of interleukin 6 receptor and gp130 expressions and proliferative capability of human CD34+ cells.

1996 ◽  
Vol 184 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
S Tajima ◽  
K Tsuji ◽  
Y Ebihara ◽  
X Sui ◽  
R Tanaka ◽  
...  

We recently demonstrated that stimulation of gp130 by a combination of soluble interleukin 6 receptor (sIL-6R) and IL-6 but not IL-6 alone significantly stimulates the ex vivo expansion of primitive hematopoietic progenitors and the generation of erythroid cells from human CD34+ cells in the presence of stem cell factor (SCF). Here, we show that gp130 is found low positively on most CD34+ cells, whereas IL-6R is expressed on only 30-50% of these cells. Although most of the colonies generated from FACS-sorted CD34+IL-6R+ cells were granulocyte/macrophage (GM) colonies, CD34+IL-6R- cells gave rise to various types of colonies, including erythroid bursts, GM, megakaryocytes, and mixed colonies in methylcellulose culture with a combination of IL-6, sIL-6R, and SCF. Similar results were obtained in culture supplemented with a combination of IL-3, IL-6, SCF, granulocyte colony-stimulating factor, erythropoietin, and thrombopoietin. A limiting dilution analysis of long-term culture-initiating cells (LTC-IC) showed that the CD34+IL-6R- cells contained a larger number of LTC-IC than did the CD34+IL-6R+ cells. In a serum-free suspension of CD34+IL-6R- cells, the addition of sIL-6R to the combination of IL-6 and SCF dramatically increased the total and multipotential progenitors, whereas CD34+IL-6R+ cells failed to do so under the same conditions. These results indicate that most of the erythroid, megakaryocytic, and primitive human hematopoietic progenitors are included in the IL-6R- populations, and the activation of gp130 on these progenitors can be achieved by a complex of IL-6-sIL-6R, but not by IL-6 alone. The present culture system using IL-6, sIL-6R, and SCF may provide a novel approach for ex vivo expansion of human primitive hematopoietic progenitors.

Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Xingwei Sui ◽  
Kohichiro Tsuji ◽  
Yasuhiro Ebihara ◽  
Ryuhei Tanaka ◽  
Kenji Muraoka ◽  
...  

Abstract We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Xingwei Sui ◽  
Kohichiro Tsuji ◽  
Yasuhiro Ebihara ◽  
Ryuhei Tanaka ◽  
Kenji Muraoka ◽  
...  

We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 709-709
Author(s):  
Bin Guo ◽  
Xinxin Huang ◽  
Hal E. Broxmeyer

Abstract Allogeneic hematopoietic cell transplantation (HCT) is widely used as a life-saving treatment for malignant and non-malignant blood disorders. Hematopoietic stem cells (HSCs) are a major contributing cell population for a successful HCT. While cord blood (CB) is an acceptable source of HSCs for clinical HCTbecause of its many advantages including prompt availability, lower incidence of GvHD and virus infection, CB HCT is usually associated with slower time to engraftment especially in adult patients when compared with other cell sources; this is partly due to limiting numbers of HSCs in single cord units. In order to overcome this limitation, ex vivo expansion of CB HSCs has been evaluated in preclinical and clinical studies for improvement of the clinical efficacy of CB HCT. While a number of different ways have been evaluated to ex-vivo expand human HSCs, little is known about the mechanisms involved, and whether efficient expansion of CB HSCs could be achieved by metabolic reprogramming. In a compound screen for potential candidates which could promote ex vivo expansion of CB HSCs, we found that PPARγ antagonist GW9662 treatment significantly enhanced ex vivo expansion of CB phenotypic HSCs (~5 fold) and progenitor cells (HPCs) (~6.8 fold) in RPMI-1640 medium containing 10% fetal bovine serum (FBS) and cytokines (SCF, FL, TPO) when compared with vehicle control. GW9662 significantly increased numbers of CB colony-forming unit (CFU) granulocyte/macrophage (GM) (~1.8 fold) and granulocyte, erythroid, macrophage, megakaryocyte (CFU-GEMM) (~3.2 fold) progenitors after 4 days ex vivo culture. To assess whether the ex vivo expanded CB HSCs enhanced by the PPARγ antagonist were functional in vivo, we performed both primary and secondary transplantation in immunocompromised NSG mice. Engraftment of CB CD34+ cells in primary recipients was significantly increased (~3 fold) both in bone marrow (BM) and peripheral blood (PB) by the cultured cells treated with GW9662. The percentages of both myeloid and lymphoid lineages were enhanced in BM of primary recipients transplanted with GW9662-treated CB CD34+ cells. We also transplanted CB CD34+ cells transfected with control shRNA or PPAR γ shRNA into NSG mice, and consistently found that both myeloid and lymphoid chimerism was enhanced in BM of recipients which were infused with PPAR γ shRNA transfected-CD34+ cells compared with control shRNA transfected-CD34+ cells. Long term reconstituting and self-renewing capability of GW9662-treated CB CD34+ cells with both enhanced myeloid and lymphoid chimerism, was confirmed in PB and BM in secondary recipients. Limiting dilution analysis was performed to calculate SCID-repopulating cells (SRC), a measure of the number of functional human HSCs. The SRC frequency of GW9662-cultured CB CD34+ cells was 4 fold greater than that of day 0 uncultured CD34+ cells, and 5 fold increased above that of vehicle-treated CD34+ cells with cytokines alone. To gain mechanistic insight into how PPARγ antagonism enhances expansion of human CB HSCs and HPCs, we performed RNA-seq analysis. Antagonizing PPARγ in CB CD34+ cells resulted in downregulation of a number of differentiation associated genes, including CD38, CD1d, HIC1, FAM20C, DUSP4, DHRS3 and ALDH1A2, which suggests that PPARγ antagonist may maintain stemness of CB CD34+ cells partly by preventing differentiation. Of interest, we found that FBP1, encoding fructose 1, 6-bisphosphatase, a negative regulator of glycolysis, was significantly down-regulated by GW9662, which was further confirmed by RT-PCR, western blot and flow cytometry analysis. GW9662 significantly enhanced glucose metabolism in CB HSCs and HPCs without compromising mitochondrial respiration. Enhanced expansion of CB HSCs by antagonizing PPARγ was totally suppressed by removal of glucose or by inhibition of glycolysis. Importantly, suppression of FBP1 greatly promoted glycolysis and ex vivo expansion of long-term repopulating CB HSCs (~3.2 fold). Overexpression of FBP1 significantly suppressed enhancedexpansion and engraftment of CB HSCs by PPARγ antagonist. Our study demonstrates that PPARγ antagonism drives ex vivo expansion of human CB HSCs and HPCs by switching on FBP1 repressed glucose metabolism and by preventing differentiation. This provides new insight into human HSC self-renewal, and suggests a novel and simple means by which metabolic reprogramming may improve the efficacy of CB HCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1243-1255 ◽  
Author(s):  
Mo A. Dao ◽  
Ami J. Shah ◽  
Gay M. Crooks ◽  
Jan A. Nolta

Abstract Retroviral-mediated transduction of human hematopoietic stem cells to provide a lifelong supply of corrected progeny remains the most daunting challenge to the success of human gene therapy. The paucity of assays to examine transduction of pluripotent human stem cells hampers progress toward this goal. By using the beige/nude/xid (bnx)/hu immune-deficient mouse xenograft system, we compared the transduction and engraftment of human CD34+progenitors with that of a more primitive and quiescent subpopulation, the CD34+CD38− cells. Comparable extents of human engraftment and lineage development were obtained from 5 × 105 CD34+ cells and 2,000 CD34+CD38− cells. Retroviral marking of long-lived progenitors from the CD34+ populations was readily accomplished, but CD34+CD38− cells capable of reconstituting bnx mice were resistant to transduction. Extending the duration of transduction from 3 to 7 days resulted in low levels of transduction of CD34+CD38− cells. Flt3 ligand was required during the 7-day ex vivo culture to maintain the ability of the cells to sustain long-term engraftment and hematopoiesis in the mice.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1920-1920
Author(s):  
Santosh Saraf ◽  
Hiroto Araki ◽  
Benjamin Petro ◽  
Kazumi G Yoshinaga ◽  
Simona Taioli ◽  
...  

Abstract Abstract 1920 Currently, a significant percentage of hematopoietic stem cell (HSC) transplantations are being performed using growth factor mobilized peripheral blood (MPB) grafts. Unfortunately, about 5 to 40% of patients are unable to benefit from HSC transplantation due to failure to mobilize and harvest an adequate graft (> 2 × 106 CD34+ cells/kg). Epigenetic modifications are thought to be important in determining the fate of HSC including self renewal and differentiation. We have previously demonstrated that sequential addition of chromatin modifying agents (CMA), 5-aza-2'-deoxyctidine (5azaD) and trichostatin A (TSA), is capable of expanding transplantable HSC 7-fold from human cord blood (CB), likely by preventing the silencing of genes which promote HSC self renewal divisions (Araki et al. Blood 2007). Using the same protocol we have also previously shown that 5azaD/TSA can expand CD34+CD90+ cells containing in vivo repopulating capacity from human bone marrow (BM) 2.5-fold (Milhem et al. Blood 2004). The objectives of our current studies were to assess whether CMA can also expand HSCs present in MPB. In order to test this hypothesis, CD34+ cells were isolated from MPB products from three healthy donors and were expanded ex vivo using 5azaD/TSA for 9 days as described previously (Araki et al. Blood 2007). Following culture, expansion of primitive CD34+CD90+ cells, colony forming unit mixed lineages (CFU-mix), and long term (5 weeks) cobblestone area forming cells (CAFC) were assessed. A 3.74 ± 0.77 fold expansion of CD34+CD90+ cells was observed in 5azaD/TSA expanded MPB cells while only a 0.93 ± 0.23 fold expansion was observed in control cultures (p = 0.025). The 5azaD/TSA expanded MPB cells had a 10.1-fold increase in the number of CFU-mix in comparison to no expansion in the control cultures (p = 0.0055). A 2.26-fold expansion of CAFC numbers was observed in 5azaD/TSA expanded MPB cells in comparison to 0.19-fold expansion in control cultures. Taken together, our data indicate that 5azaD/TSA can expand MPB CD34+CD90+ cells 3.74-fold which also possess the functional capacity to generate primitive CFU-mix and long term CAFCs. This expansion of primitive MPB CD34+CD90+ cells appears to be at an intermediate level (3.74 fold) in comparison to BM and CB which had 2.5-fold and 10.5-fold expansion, respectively. We have previously demonstrated that CD34+CD90+ expanded CB cells are exclusively responsible for reconstituting blood cells following transplantation (Araki et al. Exp Hematol 2006). Currently, the frequency of in vivo repopulating units for CMA expanded MPB is being determined in contrast to expanded BM and CB cells. However, it remains to be investigated what determines the limit for ex vivo expansion of HSC by epigenetic modifiers based on their ontogeny. Towards this goal we analyzed transcription levels of several genes implicated for HSC self renewal/expansion including HoxB4, GATA 2, and Ezh2, which were compared between MPB cells prior to and following expansion in 5azaD/TSA or control cultures. Significantly higher transcript levels were detected for HoxB4 (p = 0.003), GATA 2 (p = 0.0002), and Ezh2 (p = 0.0001) by real time quantitative RT PCR in the 5azaD/TSA expanded MPB graft in comparison to control cultures. Interestingly the transcript levels of HoxB4 and GATA 2 but not Ezh2 were significantly lower in expanded cells in contrast to unmanipulated primary MPB cells. This is in sharp contrast to our earlier results from CB in which 5azaD/TSA expanded cells displayed much higher transcript levels of HoxB4 and GATA 2 compared to primary unmanipulated CB cells. Previously we have demonstrated that environmental conditions can influence the degree of expansion of transplantable HSC from CB (Araki et al. Exp Hematol 2009). Using the same protocol we expanded MPB cells in the presence or absence of CMA using either optimal (SCF, TPO, FLT3L) or suboptimal cytokine cocktails (SCF, TPO, FLT3L with IL-3 and IL-6). Interestingly, unlike CB cells no significant difference in expansion between the two cytokine groups with or without CMA was observed (4.5 versus 4.3-fold expansion of CD34+CD90+ cells, respectively). Corresponding to this, transcript levels of HoxB4 and Ezh2 did not vary between MPB cells expanded with 5azaD/TSA in the two different cytokine environments. Our studies have the potential to be used to expand HSC from poor mobilizers in order to optimize MPB grafts for transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 1097-1105 ◽  
Author(s):  
G. Güenechea ◽  
J.C. Segovia ◽  
B. Albella ◽  
M. Lamana ◽  
M. Ramı́rez ◽  
...  

Abstract The ex vivo expansion of hematopoietic progenitors is a promising approach for accelerating the engraftment of recipients, particularly when cord blood (CB) is used as a source of hematopoietic graft. With the aim of defining the in vivo repopulating properties of ex vivo–expanded CB cells, purified CD34+ cells were subjected to ex vivo expansion, and equivalent proportions of fresh and ex vivo–expanded samples were transplanted into irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. At periodic intervals after transplantation, femoral bone marrow (BM) samples were obtained from NOD/SCID recipients and the kinetics of engraftment evaluated individually. The transplantation of fresh CD34+ cells generated a dose-dependent engraftment of recipients, which was evident in all of the posttransplantation times analyzed (15 to 120 days). When compared with fresh CB, samples stimulated for 6 days with interleukin-3 (IL-3)/IL-6/stem cell factor (SCF) contained increased numbers of hematopoietic progenitors (20-fold increase in colony-forming unit granulocyte-macrophage [CFU-GM]). However, a significant impairment in the short-term repopulation of recipients was associated with the transplantation of the ex vivo–expanded versus the fresh CB cells (CD45+repopulation in NOD/SCIDs BM: 3.7% ± 1.2% v 26.2% ± 5.9%, respectively, at 20 days posttransplantation; P < .005). An impaired short-term engraftment was also observed in mice transplanted with CB cells incubated with IL-11/SCF/FLT-3 ligand (3.5% ± 1.7% of CD45+ cells in femoral BM at 20 days posttransplantation). In contrast to these data, a similar repopulation with the fresh and the ex vivo–expanded cells was observed at later stages posttransplantation. At 120 days, the repopulation of CD45+ and CD45+/CD34+ cells in the femoral BM of recipients ranged between 67.2% to 81.1% and 8.6% to 12.6%, respectively, and no significant differences of engraftment between recipients transplanted with fresh and the ex vivo–expanded samples were found. The analysis of the engrafted CD45+ cells showed that both the fresh and the in vitro–incubated samples were capable of lymphomyeloid reconstitution. Our results suggest that although the ex vivo expansion of CB cells preserves the long-term repopulating ability of the sample, an unexpected delay of engraftment is associated with the transplantation of these manipulated cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1687-1687
Author(s):  
Tao Cheng ◽  
Hui Yu ◽  
Donna Shields ◽  
Youzhong Yuan ◽  
Hongmei Shen

Abstract Our recent study demonstrated that the cyclin-dependent kinase inhibitor (CKI) p18Ink4c (p18), also an INK4 family protein acting at early G1-phase, exerts its inhibitory role during the self-renewing division of murine hematopoietic stem cells (HSC) in vivo (Nature Cell Biology 2004). Down-modulating p18 may permit enhanced stem cell expansion in vitro, a hypothesis that is now being testing in our laboratory. To provide the proof-of-the concept, we first took advantage of the murine system by testing the in vivo reconstituting ability of cells that had been cultured under the Dexter culture condition for 19 weeks. 2–20x105 cells with non-adherent and adherent populations were transplanted into lethally irradiated hosts. 3 of 7 mice revealed long-term engraftment in the p18−/− transplanted group (0.5–33% engraftment levels) while there was no engraftment in the p18+/+ group (n=7). Moreover, a substantial level (38.6% on average) of long-term engraftments (7 months) in multilineage was achieved in secondary recipients transplanted with the p18−/− cells (n=3), demonstrating the self-renewal potential of the expanded HSCs after the extended period of long-term culture. These data strongly indicate that p18 absence is able to substantially mitigate the differentiating effect of the ex vivo culture conditions on HSCs and therefore offer a strong rationale for targeting p18 in human HSC expansion. P18 mRNA was detected by RT PCR in human CD34+ cells with a higher expression level in the more primitive subset: CD34+CD38−. To explore the possibility of targeting p18 for expanding human HSCs, we have employed the RNA interference (RNAi) technology in CD34+ cord blood cells. We screened a pool of small interfering RNA (siRNA) oligos and three of them were able to effectively reduce p18 expression by 60–80% in 48 hours as assessed by both RNA and protein analyses in human cells. Further, we tested both transient and permanent delivery methods for introducing the RNAi effect in the CD34+CD38− cells. To demonstrate whether the RNAi method would be sufficient to impact the outcome of cell division after a single or limited cell cycle(s), we chose the nucleofector technology and were able to achieve 48.30±11.66% of transduction efficiency with good viability (50.63±9.38%, n=3) in human CD34+ cells. After a single electroporation pulse, we were able to increase by 2-fold the CD34+CD38− cells associated with the same magnitude of increased colony forming activity under culture condition supplemented with SCF, TPO and Flt3. To observe the long-term effect of p18 downregulation in human HSCs, we constructed a p18 short hairpin (shRNA)-expressing lentiviral vector that was engineered to have the mouse U6 promoter upstream of a CMV-EGFP expression cassette. A transduction efficiency of 30–60% was achieved after overnight infection of the human CD34+ cells with the p18 shRNA or with control lentiviral vectors pseudotyped with the VSV-g envelope. 72–96 hours after the transduction, human p18 protein can be knocked down by the p18 siRNA lentivector at near 100% in the HeLa cell line as determined on the western blot, and at more than 50% in human primary CD34+ cells as determined by real time RT PCR. We are currently undertaking further study aimed at assessing the repopulating ability of the transduced human HSCs with lentivirus-mediated p18 shRNA in NOD/SCID mice. Together, these findings suggest that down-modulating p18 might be a feasible approach for manipulating human HSCs ex vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3183-3183
Author(s):  
Stephanie Beauchemin ◽  
Gorazd Krosl ◽  
Nathalie Beslu ◽  
Jana Krosl ◽  
Guy Sauvageau ◽  
...  

Abstract The capacity of recombinant Hoxb4 protein to induce ex vivo expansion of HSCs identifies this protein as a potential HSC expanding factor. However, its short extra- and intra-cellular half-life (3–4 hours and 40–60 minutes, respectively) are hampering clinical applications of Hoxb4. The analyses of Hoxb4 molecular structure lead us to generate amino acid substitutions: Leu7→Ala, Tyr23→Ala and Tyr28→Ala in the Hoxb4 protein in order to decrease its degradation. Indeed, these modifications increased the intracellular stability of Hoxb4 protein ~3-fold compared to wild type Hoxb4 (Hoxb4(WT)). The ability of mutated Hoxb4 protein to favor expansion of hematopoietic progenitors was first examined in cultures initiated with 10% Hoxb4(WT)-GFP, 10% mutated Hoxb4-YFP expressing cells and 80% non-transduced cells. After an 18-day culture, the proportion of Hoxb4(Leu7→Ala) and Hoxb4(Tyr23→Ala) cells increased to 50–60% in comparison to 30% for Hoxb4(WT) (p < 0.05), and no difference between the proliferation of Hoxb4(Tyr28→Ala) and Hoxb4(WT) cells could be identified. Western blot analyses showed that these Hoxb4(Leu7→Ala) and Hoxb4(Tyr23→Ala) cells expressed ~ 4-fold higher and Hoxb4(Tyr28→Ala) cells ~ 8-fold lower levels of Hoxb4 protein than Hoxb4(WT) cells. The long-term reconstituting ability of these constructs was then evaluated in vivo using competitive repopulation assays. At 8 weeks after transplantation, Hoxb4(Leu7→Ala) and Hoxb4(Tyr23→Ala) contributed to 11.5±2 and 13.1±1.8% of peripheral blood leukocytes (PBL) compared to 26.2± 4.3% determined for Hoxb4(WT), while after 16 weeks the progeny of Hoxb4(WT) cells generated the majority (≥65%) of the transplant-derived PBL in all recipients. Likewise, 16 weeks post transplantation Hoxb4 positive cells represented ≥80% of bone marrow, while cells expressing mutated Hoxb4 were present at ~10–12%level. Flow cytometry analysis of bone marrow, spleen and thymus revealed that mutated Hoxb4, like Hoxb4(WT) was expressed by all hematopoietic lineages, and that repopulation differences observed between mutated and WT Hoxb4 expressing cells were almost entirely attributable to myeloid lineage cells. However, short-term, non-competitive repopulation experiments showed that in the first 4 weeks post transplantation, mutated Hoxb4 expressing progenitors had a significantly greater contribution to the PBL recovery in comparison to Hoxb4(WT) (range 50–70% vs 16–30%, respectively; p < 0.05) for all three mutant proteins. Interestingly, this difference became less pronounced and non-significant after week 8 post transplantation. Together, these studies strongly suggest that different intracellular levels of Hoxb4 protein are affecting different types of hematopoietic progenitors. Early ex vivo expansion of clonogenic progenitors was achieved with mutated Hoxb4 proteins without impairing HSC long-term reconstituting ability. Thus, mutated Hoxb4 could represent a useful tool to accelerate engraftment after HSC transplantation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1197-1197
Author(s):  
Karen Kwai Har Li ◽  
Kam Tong Leung ◽  
Vincent Eng Choon Ooi ◽  
Linda Shiou Mei Ooi ◽  
Carmen Ka Yee Chuen ◽  
...  

Abstract Ex vivo expansion of hematopoietic stem and progenitor cells in cytokine combinations is effective in promoting differentiation and proliferation of multilineage progenitor cells, but often results in reduction of self-renewable stem cells. In this study, we investigated the effect of a mannose-binding lectin, NTL, purified from Narcissus tazetta var. chinensis on prolonged maintenance and expansion of cord blood CD34+ cells. Enriched CD34+ cells (1 x 105/mL, n=5) or mononuclear cells (1 x 106/mL, n=8) were cultured in X-VIVO-10 medium for 14, 21, 28 and 35 days without supplementary cytokine or medium changing. Our results showed that the presence of NTL (200 ng/mL) or FL-3 ligand (FL, 40 ng/mL) significantly preserved populations of early stem/progenitor cells (total CFU, BFU/CFU-E, CFU-GM, CFU-GEMM) in these cultures, compared with respective controls at various time points. In the ex vivo expansion study (n=16), the presence of stem cell factor (S, 50 ng/mL), thrombopoietin (T, 50 ng/mL), FL (F, 80 ng/mL) effectively expanded total nucleated cells (TNC) at day 8 (116 ± 20.2 fold) and day 12 (424 ± 68.8 fold), as well as all subsets of progenitor cells as demonstrated by flow cytometry and CFU assays. The presence of NTL (200 ng/mL) significantly increased TNC (148 ± 24.5 fold at day 8; 572 ± 91.9 fold at day 12; P < 0.01) and expansion of early progenitor cells (CD34+, CD34+CD38−, CFU-GEMM) and committed CFU of the myeloid (CFU-GM), erythroid (BFU/CFU-E) and the megakaryocytic lineage (CFU-MK) (P < 0.01 compared with respective TSF cultures). There was also slight but consistent increase of CD61+CD41+ cells in the presence of NTL (8.58 ± 2.14 x 105 vs. 7.30 ± 1.82 x 105 cells/mL, P < 0.001). Significantly, the increased expansion was not only contributed by the higher TNC, but also by the increase in the proportion of CD34+ cells, CD34+CD38− cells and the density of differential CFU. Six weeks after enriched CD34+ cells at day 0 or expanded cells at day 12 were infused into sub-lethally irradiated NOD/SCID mice, human CD45+ cells were detectable in the BM, spleen and PB of the mice. In the BM, there were engraftments of human hematopoietic cells of the early (CD34+), myeloid (CD33+, CD14+), B-lymphoid (CD19+) and megakaryocytic (CD61+) lineages. In animals that received day 12 expanded cells in the TSF + NTL group, there was a significant increase of human CD45+ cells in the BM (19.3% vs. 11.5%, P = 0.03, n = 15) when compared with those only exposed to TSF, and a trend of increased engraftment in their spleen (P = 0.07, n = 14). Comparison of the complete amino acid sequences of NTL and FRIL (a dicot mannose-binding lectin shown to preserve hematopoietic stem cells, PNAS, 96, 646–650, 1999) showed 10.2% identity and both peptides contain putative functional/structural sites such as those for N-myristoylation, casein kinase II phosphorylation, protein kinase C phosphorylation and N-glycosylation. The dual functions of NTL on long-term preservation and expansion of early stem/multilineage progenitor cells could be developed for applications in various cell therapy strategies, such as the clinical expansion of CD34+ cells for transplantation.


Sign in / Sign up

Export Citation Format

Share Document