scholarly journals Chemokine Sequestration by Viral Chemoreceptors as a Novel Viral Escape Strategy: Withdrawal of Chemokines from the Environment of Cytomegalovirus-infected Cells

1998 ◽  
Vol 188 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Bahram Bodaghi ◽  
Thomas R. Jones ◽  
Donato Zipeto ◽  
Claudio Vita ◽  
Lei Sun ◽  
...  

Human cytomegalovirus (HCMV), a betaherpesvirus, has developed several ways to evade the immune system, notably downregulation of cell surface expression of major histocompatibility complex class I heavy chains. Here we report that HCMV has devised another means to compromise immune surveillance mechanisms. Extracellular accumulation of both constitutively produced monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor–superinduced RANTES (regulated on activation, normal T cell expressed and secreted) was downregulated in HCMV-infected fibroblasts in the absence of transcriptional repression or the expression of polyadenylated RNA for the cellular chemokine receptors CCR-1, CCR-3, and CCR-5. Competitive binding experiments demonstrated that HCMV-infected cells bind RANTES, MCP-1, macrophage inflammatory protein (MIP)-1β, and MCP-3, but not MCP-2, to the same receptor as does MIP-1α, which is not expressed in uninfected cells. HCMV encodes three proteins with homology to CC chemokine receptors: US27, US28, and UL33. Cells infected with HCMV mutants deleted of US28, or both US27 and US28 genes, failed to downregulate extracellular accumulation of either RANTES or MCP-1. In contrast, cells infected with a mutant deleted of US27 continues to bind and downregulate those chemokines. Depletion of chemokines from the culture medium was at least partially due to continuous internalization of extracellular chemokine, since exogenously added, biotinylated RANTES accumulated in HCMV-infected cells. Thus, HCMV can modify the chemokine environment of infected cells through intense sequestering of CC chemokines, mediated principally by expression of the US28-encoded chemokine receptor.

1997 ◽  
Vol 185 (7) ◽  
pp. 1295-1306 ◽  
Author(s):  
Thomas Kerkau ◽  
Igor Bacik ◽  
Jack R. Bennink ◽  
Jonathan W. Yewdell ◽  
Thomas Hünig ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a small integral membrane phosphoprotein with two established functions: degradation of the viral coreceptor CD4 in the endoplasmic reticulum (ER) and augmentation of virus particle release from the plasma membrane of HIV-1–infected cells. We show here that Vpu is also largely responsible for the previously observed decrease in the expression of major histocompatibility complex (MHC) class I molecules on the surface of HIV-1–infected cells. Cells infected with HIV-1 isolates that fail to express Vpu, or that express genetically modified forms of Vpu that no longer induce CD4 degradation, exhibit little downregulation of MHC class I molecules. The effect of Vpu on class I biogenesis was analyzed in more detail using a Vpu-expressing recombinant vaccinia virus (VV). VV-expressed Vpu induces the rapid loss of newly synthesized endogenous or VV-expressed class I heavy chains in the ER, detectable either biochemically or by reduced cell surface expression. This effect is of similar rapidity and magnitude as the VV-expressed Vpu-induced degradation of CD4. Vpu had no discernible effects on cell surface expression of VV-expressed mouse CD54, demonstrating the selectivity of its effects on CD4 and class I heavy chains. VVexpressed Vpu does not detectably affect class I molecules that have been exported from the ER. The detrimental effects of Vpu on class I molecules could be distinguished from those caused by VV-expressed herpes virus protein ICP47, which acts by decreasing the supply of cytosolic peptides to class I molecules, indicating that Vpu functions in a distinct manner from ICP47. Based on these findings, we propose that Vpu-induced downregulation of class I molecules may be an important factor in the evolutionary selection of the HIV-1–specific vpu gene by contributing to the inability of CD8+ T cells to eradicate HIV-1 from infected individuals.


Science ◽  
2013 ◽  
Vol 340 (6128) ◽  
pp. 87-91 ◽  
Author(s):  
Richard Apps ◽  
Ying Qi ◽  
Jonathan M. Carlson ◽  
Haoyan Chen ◽  
Xiaojiang Gao ◽  
...  

A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1137-1144 ◽  
Author(s):  
Deepa Hariharan ◽  
Steven D. Douglas ◽  
Benhur Lee ◽  
Jian-Ping Lai ◽  
Donald E. Campbell ◽  
...  

Abstract The C-C chemokine receptors CCR5 and CCR3 are fusion coreceptors for human immunodeficiency virus (HIV) entry into macrophages. The regulation of their expression influences infectivity by HIV. We report here that interferon-γ (IFN-γ) a cytokine that has bidirectional effects on HIV infection of macrophages, significantly upregulated CCR5 and CCR3 cell surface expression in human mononuclear phagocytes isolated from placental cord blood and adult peripheral blood. Monocytes treated with IFN-γ showed increased chemotaxis to the CCR5 ligands macrophage inflammatory protein-1 (MIP-1) and MIP-1β, confirming the functional relevance of IFN-γ–induced CCR5 expression. However, IFN-γ suppressed HIV entry into macrophages. Interestingly, we demonstrated that IFN-γ inhibited cell surface expression of CD4, the major receptor for HIV. This finding may explain the suppressive effect of IFN-γ on HIV entry into macrophages, despite its enhancing effect on the expression of CCR5 and CCR3 by these cells. In addition, IFN-γ–induced secretion of C-C chemokines (RANTES, MIP-1, and MIP-1β) by mononuclear phagocytes may also suppress HIV entry into macrophages. These data provide further evidence for cytokine-mediated regulation of CCR5 expression and are consistent with a novel paradigm in which cytokines regulate HIV infection and leukocyte migration by reciprocal and opposing effects on the expression of CD4 and chemokine receptors.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1379-1386 ◽  
Author(s):  
Seyoum Ayehunie ◽  
Eduardo A. Garcia-Zepeda ◽  
James A. Hoxie ◽  
Richard Horuk ◽  
Thomas S. Kupper ◽  
...  

Abstract Blood dendritic cells (DC) are susceptible to both macrophage (M) and T-cell line (T) tropic human immunodeficiency virus type 1. The CC chemokines RANTES, macrophage inflammatory protein-1α (MIP-1α), MIP-1β, eotaxin, and, to a lesser extent, monocyte chemoattractant protein-1 (MCP-1) and MCP-4 blocked entry of M-tropic virus into blood DC. The CXC chemokine, SDF-1, a fusin (CXCR4 chemokine receptor) ligand, and an antifusin antibody inhibited DC entry by T-tropic virus. Purified blood DC contained CCR1, CCR2, CCR3, and CCR5 as well as the CXCR4 chemokine receptor RNA transcripts and high levels of fusin on the cell surface. The coexpression of multiple chemokine receptors offers a molecular mechanism to explain the permissiveness of DC for both M- and T-tropic viruses.


2010 ◽  
Vol 84 (21) ◽  
pp. 11245-11254 ◽  
Author(s):  
Brian C. DeHaven ◽  
Natasha M. Girgis ◽  
Yuhong Xiao ◽  
Paul N. Hudson ◽  
Victoria A. Olson ◽  
...  

ABSTRACT The vaccinia virus (VACV) complement control protein (VCP) is an immunomodulatory protein that is both secreted from and expressed on the surface of infected cells. Surface expression of VCP occurs though an interaction with the viral transmembrane protein A56 and is dependent on a free N-terminal cysteine of VCP. Although A56 and VCP have been shown to interact in infected cells, the mechanism remains unclear. To investigate if A56 is sufficient for surface expression, we transiently expressed VCP and A56 in eukaryotic cell lines and found that they interact on the cell surface in the absence of other viral proteins. Since A56 contains three extracellular cysteines, we hypothesized that one of the cysteines may be unpaired and could therefore form a disulfide bridge with VCP. To test this, we generated a series of A56 mutants in which each cysteine was mutated to a serine, and we found that mutation of cysteine 162 abrogated VCP cell surface expression. We also tested the ability of other poxvirus complement control proteins to bind to VACV A56. While the smallpox homolog of VCP is able to bind VACV A56, the ectromelia virus (ECTV) VCP homolog is only able to bind the ECTV homolog of A56, indicating that these proteins may have coevolved. Surface expression of poxvirus complement control proteins may have important implications in viral pathogenesis, as a virus that does not express cell surface VCP is attenuated in vivo. This suggests that surface expression of VCP may contribute to poxvirus pathogenesis.


2003 ◽  
Vol 50 (4) ◽  
pp. 328-333 ◽  
Author(s):  
Nathalie Pizzato ◽  
Barbara Garmy-Susini ◽  
Philippe Le Bouteiller ◽  
Francoise Lenfant

Blood ◽  
2010 ◽  
Vol 115 (7) ◽  
pp. 1354-1363 ◽  
Author(s):  
Jonathan Richard ◽  
Sardar Sindhu ◽  
Tram N. Q. Pham ◽  
Jean-Philippe Belzile ◽  
Éric A. Cohen

AbstractHIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor, including ULBP-1, -2, and -3, but not MICA or MICB, in infected cells both in vitro and in vivo. However, the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G2 cell-cycle arrest, conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4+ T lymphocytes by a process that is Vpr dependent. Importantly, Vpr enhanced the susceptibility of HIV-1–infected cells to NK cell–mediated killing. Strikingly, Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell–mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells, suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall, these results indicate that Vpr is a key determinant responsible for HIV-1–induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1–induced CD4+ T-lymphocyte depletion but may also take part in HIV-1–induced NK-cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document