scholarly journals Cooperative Inhibition of  T-Cell Antigen Receptor Signaling by a Complex between a Kinase and a Phosphatase

1999 ◽  
Vol 189 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Jean-François Cloutier ◽  
André Veillette

Antigen receptor–triggered T-cell activation is mediated by the sequential action of the Src and Syk/Zap-70 families of protein tyrosine kinases (PTKs). Previously, we reported that another PTK termed p50csk was a potent negative regulator of T-cell receptor (TCR) signaling because of its ability to inactivate Src-related kinases. This inhibitory effect required the catalytic activity of Csk, as well as its Src homology (SH)3 and SH2 domains. Subsequent studies uncovered that, via its SH3 domain, p50csk was associated with PEP, a proline-enriched protein tyrosine phosphatase (PTP) of unknown function expressed in hemopoietic cells. Herein, we have attempted to identify the role of the Csk-PEP complex in T lymphocytes. The results of our experiments showed that, like Csk, PEP was a strong repressor of TCR signaling. This property was dependent on the phosphatase activity of PEP, as well as on the sequence mediating its binding to p50csk. Through reconstitution experiments in Cos-1 cells, evidence was obtained that Csk and PEP act synergistically to inhibit protein tyrosine phosphorylation by Src-related kinases, and that this effect requires their association. Finally, experiments with a substrate-trapping mutant of PEP suggested that PEP functions by dephosphorylating and inactivating the PTKs responsible for T-cell activation. In addition to giving novel insights into the mechanisms involved in the negative regulation of T-cell activation, these findings indicate that the association of an inhibitory PTK with a PTP constitutes a more efficient means of inhibiting signal transduction by Src family kinases in vivo.

2003 ◽  
Vol 23 (6) ◽  
pp. 2017-2028 ◽  
Author(s):  
Dominique Davidson ◽  
Marcin Bakinowski ◽  
Matthew L. Thomas ◽  
Vaclav Horejsi ◽  
André Veillette

ABSTRACT PAG/Cbp (hereafter named PAG) is a transmembrane adaptor molecule found in lipid rafts. In resting human T cells, PAG is tyrosine phosphorylated and associated with Csk, an inhibitor of Src-related protein tyrosine kinases. These modifications are rapidly lost in response to T-cell receptor (TCR) stimulation. Overexpression of PAG was reported to inhibit TCR-mediated responses in Jurkat T cells. Herein, we have examined the physiological relevance and the mechanism of PAG-mediated inhibition in T cells. Our studies showed that PAG tyrosine phosphorylation and association with Csk are suppressed in response to activation of normal mouse T cells. By expressing wild-type and phosphorylation-defective (dominant-negative) PAG polypeptides in these cells, we found that the inhibitory effect of PAG is dependent on its capacity to be tyrosine phosphorylated and to associate with Csk. PAG-mediated inhibition was accompanied by a repression of proximal TCR signaling and was rescued by expression of a constitutively activated Src-related kinase, implying that it is due to an inactivation of Src kinases by PAG-associated Csk. We also attempted to identify the protein tyrosine phosphatases (PTPs) responsible for dephosphorylating PAG in T cells. Through cell fractionation studies and analyses of genetically modified mice, we established that PTPs such as PEP and SHP-1 are unlikely to be involved in the dephosphorylation of PAG in T cells. However, the transmembrane PTP CD45 seems to play an important role in this process. Taken together, these data provide firm evidence that PAG is a bona fide negative regulator of T-cell activation as a result of its capacity to recruit Csk. They also suggest that the inhibitory function of PAG in T cells is suppressed by CD45. Lastly, they support the idea that dephosphorylation of proteins on tyrosine residues is critical for the initiation of T-cell activation.


1994 ◽  
Vol 14 (8) ◽  
pp. 5523-5532
Author(s):  
D R Stover ◽  
K A Walsh

We describe a potential regulatory mechanism for the transmembrane protein-tyrosine phosphatase CD45. Phosphorylation on both tyrosine and serine residues in vitro results in an activation of CD45 specifically toward one artificial substrate but not another. The activation of these kinases appears to be order dependent, as it is enhanced when phosphorylation of tyrosine precedes that of serine but phosphorylation in the reverse order yields no activation. Any of four protein-tyrosine kinases tested, in combination with the protein-serine/threonine kinase, casein kinase II, was capable of mediating this activation in vitro. The time course of phosphorylation of CD45 in response to T-cell activation is consistent with the possibility that this regulatory mechanism is utilized in vivo.


2012 ◽  
Vol 209 (6) ◽  
pp. 1201-1217 ◽  
Author(s):  
Tadashi Yokosuka ◽  
Masako Takamatsu ◽  
Wakana Kobayashi-Imanishi ◽  
Akiko Hashimoto-Tane ◽  
Miyuki Azuma ◽  
...  

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


2005 ◽  
Vol 12 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Jennifer C. C. Neale ◽  
Thomas P. Kenny ◽  
Ronald S. Tjeerdema ◽  
M. Eric Gershwin

Mechanisms underlyingin vitroimmunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs)FynandItk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP), 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169), a model immunotoxic PCB, or DMSO (vehicle control). Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKsFynandItkwere both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part) by disruption of T cell receptor (TCR) signaling and cytokine production.


1999 ◽  
Vol 190 (10) ◽  
pp. 1427-1438 ◽  
Author(s):  
Connie L. Sommers ◽  
Ronald L. Rabin ◽  
Alexander Grinberg ◽  
Henry C. Tsay ◽  
Joshua Farber ◽  
...  

Summary Recent data indicate that several members of the Tec family of protein tyrosine kinases function in antigen receptor signal transduction. Txk, a Tec family protein tyrosine kinase, is expressed in both immature and mature T cells and in mast cells. By overexpressing Txk in T cells throughout development, we found that Txk specifically augments the phospholipase C (PLC)-γ1–mediated calcium signal transduction pathway upon T cell antigen receptor (TCR) engagement. Although Txk is structurally different from inducible T cell kinase (Itk), another Tec family member expressed in T cells, expression of the Txk transgene could partially rescue defects in positive selection and signaling in itk−/− mice. Conversely, in the itk+/+ (wild-type) background, overexpression of Txk inhibited positive selection of TCR transgenic thymocytes, presumably due to induction of cell death. These results identify a role for Txk in TCR signal transduction, T cell development, and selection and suggest that the Tec family kinases Itk and Txk perform analogous functions.


1994 ◽  
Vol 304 (3) ◽  
pp. 853-859 ◽  
Author(s):  
P M Clissold

The cross-linking by antibody of some glycosyl-phosphatidyl-inositol (GPI)-anchored proteins on the plasma membrane of T cells leads to cell activation. Phosphorylation of proteins on tyrosine residues has a central role in the control of T cell activation, and non-receptor protein tyrosine kinases can be coprecipitated with immune complexes of GPI-anchored proteins in T cell lysates. In order to investigate the nature of this interaction, two recombinant GPI-anchored proteins were constructed (using the GPI signal sequence from Thy-1), and their associations with protein tyrosine kinases in stable transfectants of a mouse thymoma have been investigated. One recombinant GPI protein is the extracellular domain of the human complement receptor-1, normally an integral membrane protein, and the other is the secreted protein, human tissue inhibitor of metalloproteinases. The latter protein should be foreign to the cell surface and yet has been expressed as a GPI-anchored protein at levels equivalent to the highly expressed antigens Thy-1 and Ly6.A2 on mouse thymoma cells. Neither of the two recombinant proteins, when immunoprecipitated from NP40 lysates of transfected cells, was associated with protein tyrosine kinases in contrast with the natural endogenous GPI-anchored proteins Thy-1 and Ly6.A2 in non-transfected parental cells. Moreover, high expression of foreign recombinant GPI protein appears to interfere with the association of the natural GPI proteins with protein tyrosine kinases.


Sign in / Sign up

Export Citation Format

Share Document