scholarly journals Thymocyte Maturation Is Regulated by the Activity of the Helix-Loop-Helix Protein, E47

1999 ◽  
Vol 190 (11) ◽  
pp. 1605-1616 ◽  
Author(s):  
Gretchen Bain ◽  
Melanie W. Quong ◽  
Rachel S. Soloff ◽  
Stephen M. Hedrick ◽  
Cornelis Murre

The E2A proteins, E12 and E47, are required for progression through multiple developmental pathways, including early B and T lymphopoiesis. Here, we provide in vitro and in vivo evidence demonstrating that E47 activity regulates double-positive thymocyte maturation. In the absence of E47 activity, positive selection of both major histocompatibility complex (MHC) class I– and class II–restricted T cell receptors (TCRs) is perturbed. Additionally, development of CD8 lineage T cells in an MHC class I–restricted TCR transgenic background is sensitive to the dosage of E47. Mice deficient for E47 display an increase in production of mature CD4 and CD8 lineage T cells. Furthermore, ectopic expression of an E2A inhibitor helix-loop-helix protein, Id3, promotes the in vitro differentiation of an immature T cell line. These results demonstrate that E2A functions as a regulator of thymocyte positive selection.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3152-3152
Author(s):  
Benjamin J Uttenthal ◽  
Emma Nicholson ◽  
Ben Carpenter ◽  
Sara Ghorashian ◽  
Graham P Wright ◽  
...  

Abstract Abstract 3152 Alloreactive immune responses directed against malignant cells in recipients of allogeneic hematopoietic stem cell transplants are able to cure patients with hematological cancers. However, such immune responses may cause severe morbidity when directed against healthy recipient tissue, resulting in graft-versus-host disease (GvHD). Naturally occurring regulatory T cells (Tregs) are CD4+ T cells characterized by their expression of the transcription factor Foxp3. Whilst adoptively transferred polyclonal Tregs suppress GvHD in several murine models, their lack of specificity may compromise beneficial immunity against malignancy or infection. The generation of MHC class I-restricted, alloantigen-specific Tregs would allow them to recognize antigen presented directly on GvHD target tissues, concentrating their sites of activation at these tissues and possibly reducing the potential for non-specific immune suppression. We have generated ‘converted’ Tregs through retroviral transfer of genes encoding Foxp3 and specific MHC class I-restricted T cell receptors (TCRs) into polyclonal conventional CD4+ T cells. We used the 2C-TCR, which recognizes the MHC class I molecule H-2Ld, expressed in Balb/c and other H-2d mice, in complex with the ubiquitously expressed peptide p2Ca; and the MH-TCR, which recognizes the MHC class I molecule H-2Db, expressed in B6 and other H-2b mice, in complex with the male peptide WMHHNMDLI. In vitro, Foxp3 2C-TCR-transduced B6 polyclonal CD4+ T cells were hyporesponsive to stimulation and suppressed the alloreactive proliferative response of B6 CD4+ and CD8+ T cells to Balb/c splenocytes, consistent with the acquisition of regulatory function. When adoptively transferred to lethally irradiated Balb/c recipients of MHC-mismatched B6 bone marrow and conventional T cells, Foxp3 2C-TCR-transduced B6 polyclonal CD4+ T cells significantly reduced early proliferation of donor T cells, weight loss and GvHD score in the recipients. Similarly, polyclonal CD4+ T cells transduced with Foxp3 and the MH-TCR caused marked suppression of allogeneic responses both in vitro and in vivo. However, while both the 2C-TCR and the MH-TCR conferred specificity to their cognate antigens in vitro, the potent suppression in these in vivo models was independent of the cognate antigen for the transduced TCRs. This non-specific suppression was markedly reduced when class I-restricted TCRs were transduced into OT-II Rag1-/- CD4+ T cells that are transgenic for a single endogenous TCR. These findings demonstrate an important role for the endogenous TCRs in driving non-specific suppression by polyclonal CD4+ T cells transduced with Foxp3 and class I-restricted TCRs, and suggest that strategies to downregulate endogenous TCRs will be required to achieve antigen-specific suppression in TCR gene-modified regulatory T cells. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A239-A239
Author(s):  
Ioannis Gavvovidis ◽  
Matthias Leisegang ◽  
Vivian Scheuplein ◽  
Matthias Obenaus ◽  
Thomas Blankenstein ◽  
...  

BackgroundAs cancer-testis antigens are self-antigens, T cells expressing high-affinity TCRs against such antigens are eliminated via negative selection. Therefore, human-derived TCRs are typically of low affinity and exhibit reduced anti-tumor activity. Affinity maturation by mutagenesis is a common tool to increase affinity but may result in reduced specificity and off-target toxicity. Using our proprietary HuTCR mouse platform, which consists of mouse lines carrying the full human TCR-a/ß loci and human HLA alleles, we have isolated naturally optimized high-affinity TCRs specific for the cancer-testis antigen MAGE-A1 and compared them in vitro and in vivo to human-derived MAGE-A1-specific TCRs that are currently reported to be in clinical development.MethodsMAGE-A1-specific TCRs were isolated from HuTCR mice immunized with the MAGE-1 antigen using scRNAseq or were synthesized based on publicly available databases of human donor-derived MAGE-A1-specific TCRs. All TCRs were re-expressed in primary human T cells as verified using peptide-MHC-multimer staining. Functional activity of the TCRs was analyzed by coculture with T2 target cells loaded with titrated amounts of epitope and measuring cytokine concentration by ELISA. Reactivity of TCRs to endogenously processed MAGE-A1 protein was assessed by coculture with tumor cell lines with variable MAGE-A1 and/or MHC-class-I expression. Tumor rejection potential of TCRs was evaluated in vivo using a syngeneic mouse model (TNA2 mice) expressing MAGE-A1 and HLA-A*02 on syngeneic tumor cells.ResultsImmunization of HuTCR mice with the MAGE-A1 antigen resulted in robust CD8+ T cell responses and several TCR clonotypes were identified by scRNAseq, with the majority of clonotypes being specific to the MAGE-A1-derived peptide KVLEYVIKV and TCR functional avidities ranging from 0.3nM to 3nM. In sharp contrast, human-derived TCRs of the same epitope specificity exhibited lower functional avidity with EC50 from 3nM to 60nM. In addition, HuTCR-mouse-derived TCRs were more sensitive in recognition of tumor cells expressing low MAGE-A1 and/or MHC-class-I. Adoptive T-cell transfer to TNA2-mice with established tumors resulted in complete rejection without relapse of tumors only in mice treated with HuTCR-mouse-derived TCR but not with human-derived or control TCRs.ConclusionsThe HuTCR mouse platform allows for the generation of high-affinity MAGE-A1-specific human TCRs with increased anti-tumor efficacy as compared to human-derived TCRs against the same cancer antigen. The in vitro and in vivo comparative data presented herein highlight the HuTCR-derived MAGE-A1-specific TCR as the most favorable candidate for clinical translation and a clinical trial evaluating its safety and efficacy in a variety of solid malignancies will be initiated November 2021.Ethics ApprovalAll animal experiments were performed according to institutional and national guidelines, after approval by the responsible authority (Landesamt für Gesundheit und Soziales, Berlin). Blood collection from healthy human donors was done after prior informed consent and experiments were conducted in accordance with the ethical standards of Declaration of Helsinki.


2019 ◽  
Vol 30 (8) ◽  
pp. 1439-1453 ◽  
Author(s):  
Julia Hagenstein ◽  
Simon Melderis ◽  
Anna Nosko ◽  
Matthias T. Warkotsch ◽  
Johannes V. Richter ◽  
...  

BackgroundNew therapies blocking the IL-6 receptor (IL-6R) have recently become available and are successfully being used to treat inflammatory diseases like arthritis. Whether IL-6 blockers may help patients with kidney inflammation currently remains unknown.MethodsTo learn more about the complex role of CD4+ T cell-intrinsic IL-6R signaling, we induced nephrotoxic nephritis, a mouse model for crescentic GN, in mice lacking T cell–specific IL-6Ra. We used adoptive transfer experiments and studies in reporter mice to analyze immune responses and Treg subpopulations.ResultsLack of IL-6Ra signaling in mouse CD4+ T cells impaired the generation of proinflammatory Th17 cells, but surprisingly did not ameliorate the course of GN. In contrast, renal damage was significantly reduced by restricting IL-6Ra deficiency to T effector cells and excluding Tregs. Detailed studies of Tregs revealed unaltered IL-10 production despite IL-6Ra deficiency. However, in vivo and in vitro, IL-6Ra classic signaling induced RORγt+Foxp3+ double-positive Tregs (biTregs), which carry the trafficking receptor CCR6 and have potent immunoregulatory properties. Indeed, lack of IL-6Ra significantly reduced Treg in vitro suppressive capacity. Finally, adoptive transfer of T cells containing IL-6Ra−/− Tregs resulted in severe aggravation of GN in mice.ConclusionsOur data refine the old paradigm, that IL-6 enhances Th17 responses and suppresses Tregs. We here provide evidence that T cell–intrinsic IL-6Ra classic signaling indeed induces the generation of Th17 cells but at the same time highly immunosuppressive RORγt+ biTregs. These results advocate caution and indicate that IL-6–directed therapies for GN need to be cell-type specific.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


1987 ◽  
Vol 166 (6) ◽  
pp. 1716-1733 ◽  
Author(s):  
J S Weber ◽  
G Jay ◽  
K Tanaka ◽  
S A Rosenberg

We have shown that two weakly immunogenic MCA sarcomas developed in our laboratory that are sensitive to high-dose IL-2 immunotherapy express class I MHC in vivo and in vitro. Two nonimmunogenic MCA sarcomas are relatively insensitive to IL-2 therapy and express minimal or no class I MHC molecules in vivo and in vitro. To study the role of MHC in the therapy of tumors with IL-2, a class I-deficient murine melanoma, B16BL6, was transfected with the Kb class I gene. Expression of class I MHC rendered B16BL6 advanced pulmonary macrometastases sensitive to IL-2 immunotherapy. 3-d micrometastases of CL8-2, a class I transfected clone of B16BL6, were significantly more sensitive to IL-2 therapy than a control nontransfected line. Expression of Iak, a class II MHC molecule, had no effect on IL-2 therapy of transfectant pulmonary micrometastases in F1 mice. By using lymphocyte subset depletion with mAbs directed against Lyt-2, therapy of class I transfectant macrometastases with high-dose IL-2 was shown to involve an Lyt-2 cell. In contrast, regression of micrometastases treated with low-dose IL-2 involved Lyt-2+ cells, but regression mediated by high doses of IL-2 did not. We hypothesize that both LAK and Lyt-2+ T cells effect IL-2-mediated elimination of micrometastases, but only Lyt-2+ T cells are involved in macrometastatic regression. Low doses of IL-2 stimulate Lyt-2+ cells to eliminate class I-expressing micrometastases, but high doses of IL-2 can recruit LAK cells to mediate regression of micrometastases independent of class I expression. Only high-dose IL-2, mediating its effect predominantly via Lyt-2+ cells, is capable of impacting on MHC class I-expressing macrometastases. Macrometastases devoid of class I MHC antigens appear to be resistant to IL-2 therapy.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4375-4386 ◽  
Author(s):  
Susanne Müerköster ◽  
Marian Rocha ◽  
Paul R. Crocker ◽  
Volker Schirrmacher ◽  
Victor Umansky

We recently established an effective immune T-cell–mediated graft-versus-leukemia (GVL) murine model system in which complete tumor remissions were achievable even in advanced metastasized cancer. We now describe that this T-cell–mediated therapy is dependent on host macrophages expressing the lymphocyte adhesion molecule sialoadhesin (Sn). Depletion of Kupffer cells in tumor-bearing mice during adoptive immunotherapy (ADI) or the treatment of these animals with anti-Sn monoclonal antibodies led to complete or partial inhibition of the immune T-cell–mediated therapeutic effect. Furthermore, Sn+ host macrophages in livers formed clusters during ADI with donor CD8 T cells. To test for a possible antigen presentation function of these macrophages, we used as an in vitro model the antigen β-galactosidase for which a dominant major histocompatibility complex (MHC) class I Ld-restricted peptide epitope is known to be recognized by specific CD8 cytotoxic T lymphocytes (CTL). We demonstrate that purified Sn+ macrophages can process exogenous β-galactosidase and stimulate MHC class I peptide-restricted CTL responses. Thus, Sn+ macrophages, which are significantly increased in the liver after ADI, may process tumor-derived proteins via the MHC class I pathway as well as via the MHC class II pathway, as shown previously, and present respective peptide epitopes to CD8 as well as to CD4 immune T cells, respectively. The synergistic interactions observed before between immune CD4 and CD8 T cells during ADI could thus occur in the observed clusters with Sn+ host macrophages.


1992 ◽  
Vol 175 (5) ◽  
pp. 1307-1316 ◽  
Author(s):  
N J Vasquez ◽  
J Kaye ◽  
S M Hedrick

To study the processes of thymic development, we have established transgenic mice expressing and alpha/beta T cell antigen receptor (TCR) specific for cytochrome c associated with class II major histocompatibility complex (MHC) molecules. The transgenic TCR chains are expressed by most of the thymocytes in these mice, and these cells have been shown to efficiently mature in association with Ek- and Ab-encoded class II MHC molecules. This report describes a characterization of the negative selection of these transgenic thymocytes in vivo that is associated with the expression of As molecules. Negative selection by As molecules appears to result in the deletion of a late stage of CD4/CD8 double-positive thymocytes in that there is a virtual absence of transgenic TCR bearing CD4 single-positive thymocytes. This phenotype is accompanied by the appearance of CD4/CD8 double-negative thymocytes and peripheral T cells that are functionally antigen reactive. The process of negative selection has also been investigated using an in vitro culture system. Upon presentation of cytochrome c by Eb-expressing nonthymic antigen-presenting cells, there occurs an antigen dose-dependent deletion of the majority of CD4/CD8 double-positive thymocytes. In contrast, presentation of Staphylococcal enterotoxin A by Eb in vitro results in minimal deletion of double-positive thymocytes. In addition, we use this in vitro model to examine the effects of cyclosporin A on negative selection. In contrast to its effects on mature T cells, and the findings of others in vivo, cyclosporin A does not inhibit antigen-induced deletion of double-positive thymocytes. Finally, a comparison of the antigen dose responses for thymocyte deletion and for peripheral T cell activation indicates that double-positive thymocyte recognition is more sensitive than mature T cells to antigen recognition.


Tumor Biology ◽  
2007 ◽  
Vol 28 (2) ◽  
pp. 70-76 ◽  
Author(s):  
Philip Savage ◽  
Maggie Millrain ◽  
Sofia Dimakou ◽  
Justin Stebbing ◽  
Julian Dyson

2022 ◽  
Vol 12 ◽  
Author(s):  
Valentina Ceglia ◽  
Sandra Zurawski ◽  
Monica Montes ◽  
Mitchell Kroll ◽  
Aurélie Bouteau ◽  
...  

CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity.


2021 ◽  
Author(s):  
Guojing Ruan ◽  
An Huang ◽  
Chupeng Hu ◽  
Ningyin Xu ◽  
Menghui Fan ◽  
...  

Abstract CD4+ CD8αα+ double-positive intraepithelial T lymphocytes (DP T cells), a newly characterized subset of intraepithelial T cell, has been reported to contribute to local immunosuppression. However, whether DP T cells are present in Helicobacter. pylori-induced gastritis, and their relationship with disease prognosis remain to be elucidated. In this study, We established chronic gastritis models through Helicobacter felis (H. felis) infection. Gastric infiltrating lymphocytes were isolated from H. felis-induced gastritis mice and analyzed by flow cytometry. Our results suggest that DP T cells frequency in H. felis-induced gastritis mice was higher than the uninfected mice. Gastric DP T cells derived from lamina propria cells, which distributed in the gastric epithelial layer. We found that DP T cells exhibited anti-inflammatory function. In vitro, DP T cells inhibited the maturation of dendritic cells and the proliferation of CD4+ T cell. The elimination of CD4+CD8αα+ T cells in vivo resulted in severe gastritis and a reduction of H. felis load. Additionally, vaccine with silk fibroin as delivery systems enhanced vaccine efficacy by reducing DP T cells. We demonstrated that DP T cells performed an immunosuppressive role in Helicobacter felis-induced gastritis. These findings revealed that DP T cells may affect the prognosis of the disease and the vaccine efficacy.


Sign in / Sign up

Export Citation Format

Share Document