scholarly journals Role of Ox40 Signals in Coordinating Cd4 T Cell Selection, Migration, and Cytokine Differentiation in T Helper (Th)1 and Th2 Cells

2000 ◽  
Vol 191 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Peter Lane
2003 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Adam F. Cunningham ◽  
Kai-Michael Toellner

The paradigm of T helper-1 (Th-1) and Th-2 cells developing from non-committed naïve precursors is firmly established. Th1 cells are characterized by IFN production and, in mice, the selective switching to IgG2a. Conversely IL-4 production and selective switching to IgG1 and IgE characterize Th2 cells. Analysis of Th2 inductionin vitroindicates that this polarization develops gradually in T cells activated by anti-CD3 in the presence of IL-4; conversely anti-CD3 and IFN induce Th1 cells. In this report, we explore evidence that indicates that the T helper cell polarizationin vivocannot solely be explained by the cytokine environment. This is provided by studying the early acquisition of Th1 and Th2 activities during responses to a mixture of Th1 and Th2-inducing antigens. It is shown that these divergent forms of T cell help can rapidly develop in cells within a single lymph node. It is argued that early polarization to show Th-1 or Th-2 behavior can be induced by signals delivered during cognate interaction between virgin T cells and dendritic cells, in the absence of type 1 or type 2 cytokines. This contrasts with the critical role of the cytokines in reinforcing the Th-phenotype and selectively expanding T helper clones.


2016 ◽  
Vol 213 (9) ◽  
pp. 1695-1703 ◽  
Author(s):  
Haiyin Liu ◽  
Reema Jain ◽  
Jing Guan ◽  
Vivian Vuong ◽  
Satoshi Ishido ◽  
...  

Major histocompatibility complex class II (MHC II) expression is tightly regulated, being subjected to cell type–specific mechanisms that closely control its levels at the cell surface. Ubiquitination by the E3 ubiquitin ligase MARCH 1 regulates MHC II expression in dendritic cells and B cells. In this study, we demonstrate that the related ligase MARCH 8 is responsible for regulating surface MHC II in thymic epithelial cells (TECs). March8−/− mice have elevated MHC II at the surface of cortical TECs and autoimmune regulator (AIRE)− medullary TECs (mTECs), but not AIRE+ mTECs. Despite this, thymic and splenic CD4+ T cell numbers and repertoires remained unaltered in March8−/− mice. Notably, the ubiquitination of MHC II by MARCH 8 is controlled by CD83. Mice expressing a mutated form of CD83 (Cd83anu/anu mice) have impaired CD4+ T cell selection, but deleting March8 in Cd83anu/anu mice restored CD4+ T cell selection to normal levels. Therefore, orchestrated regulation of MHC II surface expression in TECs by MARCH 8 and CD83 plays a major role in CD4+ T cell selection. Our results also highlight the specialized use of ubiquitinating machinery in distinct antigen-presenting cell types, with important functional consequences and implications for therapeutic manipulation.


2002 ◽  
Vol 195 (10) ◽  
pp. 1349-1358 ◽  
Author(s):  
Karen Honey ◽  
Terry Nakagawa ◽  
Christoph Peters ◽  
Alexander Rudensky

CD4+ T cells are positively selected in the thymus on peptides presented in the context of major histocompatibility complex class II molecules expressed on cortical thymic epithelial cells. Molecules regulating this peptide presentation play a role in determining the outcome of positive selection. Cathepsin L mediates invariant chain processing in cortical thymic epithelial cells, and animals of the I-Ab haplotype deficient in this enzyme exhibit impaired CD4+ T cell selection. To determine whether the selection defect is due solely to the block in invariant chain cleavage we analyzed cathepsin L–deficient mice expressing the I-Aq haplotype which has little dependence upon invariant chain processing for peptide presentation. Our data indicate the cathepsin L defect in CD4+ T cell selection is haplotype independent, and thus imply it is independent of invariant chain degradation. This was confirmed by analysis of I-Ab mice deficient in both cathepsin L and invariant chain. We show that the defect in positive selection in the cathepsin L−/− thymus is specific for CD4+ T cells that can be selected in a wild-type and provide evidence that the repertoire of T cells selected differs from that in wild-type mice, suggesting cortical thymic epithelial cells in cathepsin L knockout mice express an altered peptide repertoire. Thus, we propose a novel role for cathepsin L in regulating positive selection by generating the major histocompatibility complex class II bound peptide ligands presented by cortical thymic epithelial cells.


1993 ◽  
Vol 689 (1 The Neurohypo) ◽  
pp. 320-329 ◽  
Author(s):  
VINCENT GEENEN ◽  
HENRI MARTENS ◽  
FRANÇOISE ROBERT ◽  
ABDELLAH BENHIDA ◽  
NADINE CORMANN-GOFFIN ◽  
...  

2016 ◽  
Vol 213 (9) ◽  
pp. 1685-1694 ◽  
Author(s):  
Julia von Rohrscheidt ◽  
Elisabetta Petrozziello ◽  
Jelena Nedjic ◽  
Christine Federle ◽  
Lena Krzyzak ◽  
...  

Deficiency of CD83 in thymic epithelial cells (TECs) dramatically impairs thymic CD4 T cell selection. CD83 can exert cell-intrinsic and –extrinsic functions through discrete protein domains, but it remains unclear how CD83’s capacity to operate through these alternative functional modules relates to its crucial role in TECs. In this study, using viral reconstitution of gene function in TECs, we found that CD83’s transmembrane domain is necessary and sufficient for thymic CD4 T cell selection. Moreover, a ubiquitination-resistant MHCII variant restored CD4 T cell selection in Cd83−/− mice. Although during dendritic cell maturation CD83 is known to stabilize MHCII through opposing the ubiquitin ligase March1, regulation of March1 did not account for CD83’s TEC-intrinsic role. Instead, we provide evidence that MHCII in cortical TECs (cTECs) is targeted by March8, an E3 ligase of as yet unknown physiological substrate specificity. Ablating March8 in Cd83−/− mice restored CD4 T cell development. Our results identify CD83-mediated MHCII stabilization through antagonism of March8 as a novel functional adaptation of cTECs for T cell selection. Furthermore, these findings suggest an intriguing division of labor between March1 and March8 in controlling inducible versus constitutive MHCII expression in hematopoietic antigen-presenting cells versus TECs.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2665
Author(s):  
Amal J. Ali ◽  
Jeffrey Makings ◽  
Klaus Ley

Regulatory T cells (Tregs) express the lineage-defining transcription factor FoxP3 and play crucial roles in self-tolerance and immune homeostasis. Thymic tTregs are selected based on affinity for self-antigens and are stable under most conditions. Peripheral pTregs differentiate from conventional CD4 T cells under the influence of TGF-β and other cytokines and are less stable. Treg plasticity refers to their ability to inducibly express molecules characteristic of helper CD4 T cell lineages like T-helper (Th)1, Th2, Th17 or follicular helper T cells. Plastic Tregs retain FoxP3 and are thought to be specialized regulators for “their” lineage. Unstable Tregs lose FoxP3 and switch to become exTregs, which acquire pro-inflammatory T-helper cell programs. Atherosclerosis with systemic hyperlipidemia, hypercholesterolemia, inflammatory cytokines, and local hypoxia provides an environment that is likely conducive to Tregs switching to exTregs.


1996 ◽  
Vol 183 (3) ◽  
pp. 1111-1118 ◽  
Author(s):  
J P DiSanto ◽  
D Guy-Grand ◽  
A Fisher ◽  
A Tarakhovsky

The common cytokine receptor gamma chain (gammac), which is a functional subunit of the receptors for interleukins (IL)-2, -4, -7, -9, and -15, plays an important role in lymphoid development. Inactivation of this molecule in mice leads to abnormal T cell lymphopoiesis characterized by thymic hypoplasia and reduced numbers of peripheral T cells. To determine whether T cell development in the absence of gammac is associated with alterations of intrathymic and peripheral T cell selection, we have analyzed gammac-deficient mice made transgenic for the male-specific T cell receptor (TCR) HY (HY/gammac- mice). In HY/gammac- male mice, negative selection of autoreactive thymocytes was not diminished; however, peripheral T cells expressing transgenic TCR-alpha and -beta chains (TCR-alphaT/betaT) were absent, and extrathymic T cell development was completely abrogated. In HY/gammac- female mice, the expression of the transgenic TCR partially reversed the profound thymic hypoplasia observed in nontransgenic gammac- mice, generating increased numbers of thymocytes in all subsets, particularly the TCR-alphaT/betaT CD8+ single-positive thymocytes. Despite efficient positive selection, however, naive CD8+ TCR-alphaT/betaT T cells were severely reduced in the peripheral lymphoid organs of HY/gammac- female mice. These results not only underscore the indispensible role of gammac in thymocyte development, but also demonstrate the critical role of gammac in the maintenance and/or expansion of peripheral T cell pools.


2004 ◽  
Vol 200 (6) ◽  
pp. 725-735 ◽  
Author(s):  
Laura Rivino ◽  
Mara Messi ◽  
David Jarrossay ◽  
Antonio Lanzavecchia ◽  
Federica Sallusto ◽  
...  

We previously reported that central–memory T cells (TCM cells), which express lymph node homing receptors CCR7 and CD62L, are largely devoid of effector functions but acquire characteristics of effector–memory T cells (TEM cells) (i.e., CCR7− T helper [Th]1 or Th2 cells) after stimulation with T cell receptor agonists or homeostatic cytokines. Here we show that three chemokine receptors identify functional subsets within the human CD4+ TCM cell pool. TCM cells expressing CXCR3 secreted low amounts of interferon γ, whereas CCR4+ TCM cells produced some interleukin (IL)-4, but not IL-5. In response to IL-7 and IL-15, CXCR3+ TCM and CCR4+ TCM cells invariably generated fully differentiated CCR7− Th1 and Th2 cells, respectively, suggesting that they represent pre-Th1 and pre-Th2 cells. Conversely, CXCR5+ TCM cells lacking CXCR3 and CCR4 remained nonpolarized and retained CCR7 and CD62L expression upon cytokine-driven expansion. Unlike naive cells, all memory subsets had a low T cell receptor rearrangement excision circle content, spontaneously incorporated bromodeoxyuridine ex vivo, and contained cells specific for tetanus toxoid. Conversely, recall responses to cytomegalovirus and vaccinia virus were largely restricted to CXCR3+ TCM and TEM cells. We conclude that antigen-specific memory T cells are distributed between TEM cells and different subsets of TCM cells. Our results also explain how the quality of primary T cell responses could be maintained by TCM cells in the absence of antigen.


Sign in / Sign up

Export Citation Format

Share Document