scholarly journals Critical role for the common cytokine receptor gamma chain in intrathymic and peripheral T cell selection.

1996 ◽  
Vol 183 (3) ◽  
pp. 1111-1118 ◽  
Author(s):  
J P DiSanto ◽  
D Guy-Grand ◽  
A Fisher ◽  
A Tarakhovsky

The common cytokine receptor gamma chain (gammac), which is a functional subunit of the receptors for interleukins (IL)-2, -4, -7, -9, and -15, plays an important role in lymphoid development. Inactivation of this molecule in mice leads to abnormal T cell lymphopoiesis characterized by thymic hypoplasia and reduced numbers of peripheral T cells. To determine whether T cell development in the absence of gammac is associated with alterations of intrathymic and peripheral T cell selection, we have analyzed gammac-deficient mice made transgenic for the male-specific T cell receptor (TCR) HY (HY/gammac- mice). In HY/gammac- male mice, negative selection of autoreactive thymocytes was not diminished; however, peripheral T cells expressing transgenic TCR-alpha and -beta chains (TCR-alphaT/betaT) were absent, and extrathymic T cell development was completely abrogated. In HY/gammac- female mice, the expression of the transgenic TCR partially reversed the profound thymic hypoplasia observed in nontransgenic gammac- mice, generating increased numbers of thymocytes in all subsets, particularly the TCR-alphaT/betaT CD8+ single-positive thymocytes. Despite efficient positive selection, however, naive CD8+ TCR-alphaT/betaT T cells were severely reduced in the peripheral lymphoid organs of HY/gammac- female mice. These results not only underscore the indispensible role of gammac in thymocyte development, but also demonstrate the critical role of gammac in the maintenance and/or expansion of peripheral T cell pools.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Engel ◽  
Tom Sidwell ◽  
Ajithkumar Vasanthakumar ◽  
George Grigoriadis ◽  
Ashish Banerjee

Regulatory T cells (Tregs) are a subset of CD4 T cells that are key mediators of immune tolerance. Most Tregs develop in the thymus. In this review we summarise recent findings on the role of diverse signalling pathways and downstream transcription factors in thymic Treg development.


2021 ◽  
Author(s):  
Dingxi Zhou ◽  
Mariana Borsa ◽  
Daniel J. Puleston ◽  
Susanne Zellner ◽  
Jesusa Capera ◽  
...  

CD4+ T cells orchestrate both humoral and cytotoxic immune responses. While it is known that CD4+ T cell proliferation relies on autophagy, direct identification of the autophagosomal cargo involved is still missing. Here, we created a transgenic mouse model, which, for the first time, enables us to directly map the proteinaceous content of autophagosomes in any primary cell by LC3 proximity labelling. IL-7Rα, a cytokine receptor mostly found in naive and memory T cells, was reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy showed increased IL-7Rα surface expression, while no defect in internalisation was observed. Mechanistically, excessive surface IL-7Rα sequestrates the common gamma chain, impairing the IL-2R assembly and downstream signalling crucial for T cell proliferation. This study provides proof-of-principle that key autophagy substrates can be reliably identified with this model to help mechanistically unravel autophagy's contribution to healthy physiology and disease.


2021 ◽  
Vol 118 (23) ◽  
pp. e2103730118
Author(s):  
Yuka Nakajima ◽  
Kenji Chamoto ◽  
Takuma Oura ◽  
Tasuku Honjo

CD8+ T cells play a central role in antitumor immune responses that kill cancer cells directly. In aged individuals, CD8+ T cell immunity is strongly suppressed, which is associated with cancer and other age-related diseases. The mechanism underlying this age-related decrease in immune function remains largely unknown. This study investigated the role of T cell function in age-related unresponsiveness to PD-1 blockade cancer therapy. We found inefficient generation of CD44lowCD62Llow CD8+ T cell subset (P4) in draining lymph nodes of tumor-bearing aged mice. In vitro stimulation of naive CD8+ T cells first generated P4 cells, followed by effector/memory T cells. The P4 cells contained a unique set of genes related to enzymes involved in one-carbon (1C) metabolism, which is critical to antigen-specific T cell activation and mitochondrial function. Consistent with this finding, 1C-metabolism–related gene expression and mitochondrial respiration were down-regulated in aged CD8+ T cells compared with young CD8+ T cells. In aged OVA-specific T cell receptor (TCR) transgenic mice, ZAP-70 was not activated, even after inoculation with OVA-expressing tumor cells. The attenuation of TCR signaling appeared to be due to elevated expression of CD45RB phosphatase in aged CD8+ T cells. Surprisingly, strong stimulation by nonself cell injection into aged PD-1–deficient mice restored normal levels of CD45RB and ameliorated the emergence of P4 cells and 1C metabolic enzyme expression in CD8+ T cells, and antitumor activity. These findings indicate that impaired induction of the P4 subset may be responsible for the age-related resistance to PD-1 blockade, which can be rescued by strong TCR stimulation.


2009 ◽  
Vol 30 (3) ◽  
pp. 590-600 ◽  
Author(s):  
Wen Qing Li ◽  
Tad Guszczynski ◽  
Julie A. Hixon ◽  
Scott K. Durum

ABSTRACT Interleukin-7 (IL-7) is critical for T-cell development and peripheral T-cell homeostasis. The survival of pro-T cells and mature T cells requires IL-7. The survival function of IL-7 is accomplished partly through induction of the antiapoptotic protein Bcl-2 and inhibition of proapoptotic proteins Bax and Bad. We show here that the proapoptotic protein Bim, a BH3-only protein belonging to the Bcl-2 family, also plays a role in peripheral T-cell survival. Deletion of Bim partially protected an IL-7-dependent T-cell line and peripheral T cells, especially cells with an effector memory phenotype, from IL-7 deprivation. However, T-cell development in the thymus was not restored in IL-7−/− Rag2−/− mice reconstituted with Bim−/− bone marrow. IL-7 withdrawal altered neither the intracellular location of Bim, which was constitutively mitochondrial, nor its association with Bcl-2; however, a reduction in its association with the prosurvival protein Mcl-1 was observed. IL-7 withdrawal did not increase Bim mRNA or protein expression but did induce changes in the isoelectric point of BimEL and its reactivity with an antiphosphoserine antibody. Our findings suggest that the maintenance of peripheral T cells by IL-7 occurs partly through inhibition of Bim activity at the posttranslational level.


2020 ◽  
Vol 38 (17) ◽  
pp. 1938-1950 ◽  
Author(s):  
Nirali N. Shah ◽  
Steven L. Highfill ◽  
Haneen Shalabi ◽  
Bonnie Yates ◽  
Jianjian Jin ◽  
...  

PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen, represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric antigen receptor (CAR) T cells. PATIENTS AND METHODS We conducted a single-center, phase I, 3 + 3 dose-escalation trial with a large expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory CD22+ malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives included efficacy, CD22 CAR T-cell persistence, and cytokine profiling. RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were minimal and transient. Hemophagocytic lymphohistiocytosis–like manifestations were seen in 19/58 (32.8%) of subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months). Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1 to 6.5 months). Thirteen participants proceeded to stem-cell transplantation. CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy.


2002 ◽  
Vol 195 (10) ◽  
pp. 1349-1358 ◽  
Author(s):  
Karen Honey ◽  
Terry Nakagawa ◽  
Christoph Peters ◽  
Alexander Rudensky

CD4+ T cells are positively selected in the thymus on peptides presented in the context of major histocompatibility complex class II molecules expressed on cortical thymic epithelial cells. Molecules regulating this peptide presentation play a role in determining the outcome of positive selection. Cathepsin L mediates invariant chain processing in cortical thymic epithelial cells, and animals of the I-Ab haplotype deficient in this enzyme exhibit impaired CD4+ T cell selection. To determine whether the selection defect is due solely to the block in invariant chain cleavage we analyzed cathepsin L–deficient mice expressing the I-Aq haplotype which has little dependence upon invariant chain processing for peptide presentation. Our data indicate the cathepsin L defect in CD4+ T cell selection is haplotype independent, and thus imply it is independent of invariant chain degradation. This was confirmed by analysis of I-Ab mice deficient in both cathepsin L and invariant chain. We show that the defect in positive selection in the cathepsin L−/− thymus is specific for CD4+ T cells that can be selected in a wild-type and provide evidence that the repertoire of T cells selected differs from that in wild-type mice, suggesting cortical thymic epithelial cells in cathepsin L knockout mice express an altered peptide repertoire. Thus, we propose a novel role for cathepsin L in regulating positive selection by generating the major histocompatibility complex class II bound peptide ligands presented by cortical thymic epithelial cells.


1986 ◽  
Vol 164 (3) ◽  
pp. 709-722 ◽  
Author(s):  
T R Malek ◽  
G Ortega ◽  
C Chan ◽  
R A Kroczek ◽  
E M Shevach

The Ly-6 locus controls the expression and/or encodes for alloantigenic specificities found primarily on subpopulations of murine T and B lymphocytes. We have recently identified and characterized a new rat mAb, D7, that recognizes a nonpolymorphic Ly-6 specificity. After crosslinking by anti-Ig reagents or by Fc receptor-bearing accessory cells, mAb D7 could induce IL-2 production from T cell hybridomas, and in the presence of PMA could trigger a vigorous proliferative response in resting peripheral T cells. The addition of mAb D7 to cultures of antigen- and alloantigen-, but not mitogen-stimulated T cells resulted in a marked augmentation of the proliferative response. A number of other well-characterized mAbs to Ly-6 locus products could also stimulate a T cell proliferative response after crosslinking by anti-Ig and in the presence of PMA. These results strongly suggest that Ly-6 molecules may play a critical role in the T cell activation cascade, either as receptors for an unidentified soluble or cell-associated ligand or as transducing molecules that modulate signals initiated by antigen stimulation of the T3-Ti complex.


2020 ◽  
Vol 4 (17) ◽  
pp. 4069-4082
Author(s):  
Joji Nagasaki ◽  
Yosuke Togashi ◽  
Takeaki Sugawara ◽  
Makiko Itami ◽  
Nobuhiko Yamauchi ◽  
...  

Abstract Classic Hodgkin lymphoma (cHL) responds markedly to PD-1 blockade therapy, and the clinical responses are reportedly dependent on expression of major histocompatibility complex class II (MHC-II). This dependence is different from other solid tumors, in which the MHC class I (MHC-I)/CD8+ T-cell axis plays a critical role. In this study, we investigated the role of the MHC-II/CD4+ T-cell axis in the antitumor effect of PD-1 blockade on cHL. In cHL, MHC-I expression was frequently lost, but MHC-II expression was maintained. CD4+ T cells highly infiltrated the tumor microenvironment of MHC-II–expressing cHL, regardless of MHC-I expression status. Consequently, CD4+ T-cell, but not CD8+ T-cell, infiltration was a good prognostic factor in cHL, and PD-1 blockade showed antitumor efficacy against MHC-II–expressing cHL associated with CD4+ T-cell infiltration. Murine lymphoma and solid tumor models revealed the critical role of antitumor effects mediated by CD4+ T cells: an anti-PD-1 monoclonal antibody exerted antitumor effects on MHC-I−MHC-II+ tumors but not on MHC-I−MHC-II− tumors, in a cytotoxic CD4+ T-cell–dependent manner. Furthermore, LAG-3, which reportedly binds to MHC-II, was highly expressed by tumor-infiltrating CD4+ T cells in MHC-II–expressing tumors. Therefore, the combination of LAG-3 blockade with PD-1 blockade showed a far stronger antitumor immunity compared with either treatment alone. We propose that PD-1 blockade therapies have antitumor effects on MHC-II–expressing tumors such as cHL that are mediated by cytotoxic CD4+ T cells and that LAG-3 could be a candidate for combination therapy with PD-1 blockade.


1993 ◽  
Vol 689 (1 The Neurohypo) ◽  
pp. 320-329 ◽  
Author(s):  
VINCENT GEENEN ◽  
HENRI MARTENS ◽  
FRANÇOISE ROBERT ◽  
ABDELLAH BENHIDA ◽  
NADINE CORMANN-GOFFIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document