scholarly journals Critical Role for Cd8 in T Cell Receptor Binding and Activation by Peptide/Major Histocompatibility Complex Multimers

2000 ◽  
Vol 191 (2) ◽  
pp. 335-346 ◽  
Author(s):  
Mark A. Daniels ◽  
Stephen C. Jameson

Recent data using MHC/peptide tetramers and dimers suggests that the T cell coreceptors, CD4 and CD8, although important for T cell activation, do not play a direct role in facilitating T cell receptor (TCR) binding to multivalent MHC/peptide ligands. Instead, a current model proposes that coreceptors are recruited only after a stable TCR–MHC/peptide complex has already formed and signaled. In contrast, we show using multimeric class I MHC/peptide ligands that CD8 plays a critical (in some cases obligatory) role in antigen-specific TCR binding. T cell activation, measured by calcium mobilization, was induced by multimeric but not monomeric ligands and also showed CD8 dependency. Our analysis using anti-CD8 antibodies revealed that binding to different epitopes of CD8 can either block or augment TCR–MHC/peptide interaction. These effects on TCR binding to high-affinity agonist ligands were even more pronounced when binding to multimeric low-affinity ligands, including TCR antagonists, was studied. Our data have important implications for the role of CD8 in TCR binding to MHC/peptide ligands and in T cell activation. In addition, our results argue against the view that multimeric MHC/peptide ligands bind directly and solely to the TCR; rather, our data highlight a pivotal contribution of CD8 for this association.

2007 ◽  
Vol 27 (14) ◽  
pp. 5235-5245 ◽  
Author(s):  
Hu Zeng ◽  
Lie Di ◽  
Guoping Fu ◽  
Yuhong Chen ◽  
Xiang Gao ◽  
...  

ABSTRACT Bcl10 (B-cell lymphoma 10) is an adaptor protein comprised of an N-terminal caspase recruitment domain and a C-terminal serine/threonine-rich domain. Bcl10 plays a critical role in antigen receptor-mediated NF-κB activation and lymphocyte development and functions. Our current study has discovered that T-cell activation induced monophosphorylation and biphosphorylation of Bcl10 and has identified S138 within Bcl10 as one of the T-cell receptor-induced phosphorylation sites. Alteration of S138 to an alanine residue impaired T-cell activation-induced ubiquitination and subsequent degradation of Bcl10, ultimately resulting in prolongation of TCR-mediated NF-κB activation and enhancement of interleukin-2 production. Taken together, our findings demonstrate that phosphorylation of Bcl10 at S138 down-regulates Bcl10 protein levels and thus negatively regulates T-cell receptor-mediated NF-κB activation.


1995 ◽  
Vol 15 (6) ◽  
pp. 3171-3178 ◽  
Author(s):  
E N Neumeister ◽  
Y Zhu ◽  
S Richard ◽  
C Terhorst ◽  
A C Chan ◽  
...  

ZAP-70 is a protein tyrosine kinase thought to play a critical role in T-cell receptor (TCR) signal transduction. During T-cell activation, ZAP-70 binds to a conserved signalling motif known as the immune receptor tyrosine activating motif (ITAM) and becomes tyrosine phosphorylated. To determine whether binding of ZAP-70 to the phosphorylated ITAM was able to activate its kinase activity, we measured the kinase activity of ZAP-70 both when it was bound and when it was unbound to phosphorylated TCR subunits. The ability of ZAP-70 to phosphorylate itself, but not exogenous substrates, was enhanced when it was bound to the tyrosine-phosphorylated TCR zeta and eta chains or to a construct that contained duplicated epsilon ITAMs. No enhanced ZAP-70 autophosphorylation was noted when it was bound to tyrosine-phosphorylated CD3 gamma or epsilon. In addition, autophosphorylation of ZAP-70 when bound to zeta or eta resulted in the generation of multiple distinct ZAP-70 phosphorylated tyrosine residues which had the capacity to bind the SH2 domains of fyn, lck, GAP, and abl. As the effect was noted only when ZAP-70 was bound to TCR subunits containing multiple ITAMs, we propose that one of the roles of the tandem ITAMs is to facilitate the autophosphorylation of ZAP-70. Tyrosine-phosphorylated ZAP-70 then mediates downstream signalling by recruiting SH2 domain-containing signalling proteins.


2001 ◽  
Vol 193 (3) ◽  
pp. 329-338 ◽  
Author(s):  
George S. Vratsanos ◽  
Sungsoo Jung ◽  
Yeong-Min Park ◽  
Joe Craft

Polyclonal CD4+ T cell activation is characteristic of spontaneous lupus. As a potential explanation for this phenotype, we hypothesized that T cells from lupus-prone mice are intrinsically hyperresponsive to stimulation with antigen, particularly to those peptide ligands having a low affinity for the T cell receptor (TCR). To test this hypothesis, we backcrossed the α and β chain genes of the AND TCR specific for amino acids 88–104 of pigeon cytochrome C (PCC) to the Fas-intact MRL/Mp+Fas-lpr and to the H-2k–matched control backgrounds B10.BR and CBA/CaJ (MRL.AND, B10.AND, and CBA.AND, respectively), and assessed naive CD4+ TCR transgenic T cell activation in vitro after its encounter with cognate antigen and lower affinity altered peptide ligands (APLs). MRL.AND T cells, compared with control B10.AND and CBA.AND cells, proliferated more when stimulated with agonist antigen. More strikingly, MRL.AND T cells proliferated significantly more and produced more interleukin 2 when stimulated with the APLs of PCC 88–104, having lower affinity for the transgenic TCR. These results imply that one of the forces driving polyclonal activation of α/β T cells in lupus is an intrinsically heightened response to peptide antigen, particularly those with low affinity for the TCR, independent of the nature of the antigen-presenting cell and degree of costimulation.


1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


2020 ◽  
Author(s):  
Lina Freage ◽  
Deana Jamal ◽  
Nicole Williams ◽  
Prabodhika R. Mallikaratchy

AbstractRecently, immunotherapeutic modalities with engineered cells and monoclonal antibodies have been effective in treating several malignancies. However, growing evidence suggests that immune-related adverse events (irAE) lead to severe and long-term side effects. Most iRAEs involve prolonged circulation of antibodies. To address this problem, nucleic acid aptamers can serve as alternative molecules to design immunotherapeutics with high functional diversity and predictable circulation times. Here, we report the first synthetic prototype consisting of DNA aptamers, which can activate T-cell receptor cluster of differentiation 3 (TCR-CD3) complex in cultured T-cells. We show that activation potential is similar to that of a monoclonal antibody (mAb) against TCR-CD3, suggesting the potential of aptamers in developing efficacious synthetic immunomodulators. The synthetic prototype of anti-TCR-CD3ε, as described herein, was designed using aptamer ZUCH-1 against TCR-CD3ε, generated by Ligand Guided Selection (LIGS). Aptamer ZUCH-1 was truncated and modified with nuclease-resistant RNA analogs to enhance stability. Several dimeric analogs with truncated and modified variants were designed with variable linker lengths to investigate the activation potential of each construct. Among them, dimeric aptamer with approximate dimensions similar to those of an antibody showed the highest T-cell-activation, suggesting the importance of optimizing linker lengths in engineering functional aptamers. The observed activation potential of dimeric aptamers shows the vast potential of aptamers in designing synthetically versatile immunomodulators with tunable pharmacokinetic properties, expanding immunotherapeutic designs with the use of nucleic acid-based ligands such as aptamers.


Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. eabe9124
Author(s):  
Pirooz Zareie ◽  
Christopher Szeto ◽  
Carine Farenc ◽  
Sachith D. Gunasinghe ◽  
Elizabeth M. Kolawole ◽  
...  

T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db–NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.


Sign in / Sign up

Export Citation Format

Share Document