scholarly journals Gene Expression Profiling of Hairy Cell Leukemia Reveals a Phenotype Related to Memory B Cells with Altered Expression of Chemokine and Adhesion Receptors

2004 ◽  
Vol 199 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Katia Basso ◽  
Arcangelo Liso ◽  
Enrico Tiacci ◽  
Roberta Benedetti ◽  
Alessandro Pulsoni ◽  
...  

Hairy cell leukemia (HCL) is a chronic B cell malignancy characterized by the diffuse infiltration of bone marrow and spleen by cells displaying a typical “hairy” morphology. However, the nature of the HCL phenotype and its relationship to normal B cells and to other lymphoma subtypes remains unclear. Using gene expression profiling, we show here that HCL displays a homogeneous pattern of gene expression, which is clearly distinct from that of other B cell non-Hodgkin lymphomas. Comparison with the gene expression profiles of purified normal B cell subpopulations, including germinal center (GC), pre-GC (naive), and post-GC (memory) B cells, shows that HCL cells are more related to memory cells, suggesting a derivation from this B cell population. Notably, when compared with memory cells, HCL cells displayed a remarkable conservation in proliferation, apoptosis, and DNA metabolism programs, whereas they appeared significantly altered in the expression of genes controlling cell adhesion and response to chemokines. Finally, these analyses have identified several genes that are specifically expressed in HCL and whose expression was confirmed at the protein level by immunocytochemical analysis of primary HCL cases. These results have biological implications relevant to the pathogenesis of this malignancy as well as clinical implications for its diagnosis and therapy.

Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2008-2014 ◽  
Author(s):  
Takashi Machii ◽  
Mitsuhiro Yamaguchi ◽  
Ryoichi Inoue ◽  
Yukihiro Tokumine ◽  
Hirohiko Kuratsune ◽  
...  

Abstract Polyclonal B lymphocytosis was found in four patients having clinical and hematologic features resembling those of hairy cell leukemia (HCL). All four patients were women between 37 and 67 years of age. Three patients had splenomegaly. Lymphadenopthy was absent or slight. Persistent lymphocytosis was seen in all the patients, and anemia and/or thrombopenia was observed in three of the patients. Abnormal lymphocytes have long microvilli and prominent membranous ruffles on their surfaces. Bone marrow aspirates and biopsy specimens showed increased numbers of abnormal lymphocytes with round nuclei and abundant pale cytoplasm. Although these findings were similar to those of HCL, studies of Ig gene rearrangements and expression showed the polyclonal proliferation of B cells. We called this new disease hairy B-cell lymphoproliferative disorder (HBLD). All four patients exhibited a polyclonal increase in serum IgG. The morphology of the cells in HBLD was more similar to that of leukemia cells of a variant form of HCL (HCL-Japanese variant) than to typical HCL cells. The surface IgG+, CD5−, CD11c+, CD22+, CD24−, CD25− phenotype and the weak tartrate-resistant acid phosphatase activity in the cells were identical to those of HCL cells of the Japanese variant. Our findings suggest that the B cells in HBLD are the nonmalignant counterpart of leukemic B cells in HCL-Japanese variant.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2277-2277
Author(s):  
Daruka Mahadevan ◽  
Catherine Spier ◽  
Kimiko Della Croce ◽  
Susan Miller ◽  
Benjamin George ◽  
...  

Abstract Background: WHO classifies NHL into B (~85%) and T (~15%) cell subtypes. Of the T-cell NHL, peripheral T-cell NHL (PTCL, NOS) comprises ~6–10% with an inferior response and survival to chemotherapy compared to DLBCL. Gene Expression Profiling (GEP) of DLBCL has provided molecular signatures that define 3 subclasses with distinct survival rates. The current study analyzed transcript profiling in PTCL (NOS) and compared and contrasted it to GEP of DLBCL. Methods : Snap frozen samples of 5 patients with PTCL (NOS) and 4 patients with DLBCL were analyzed utilizing the HG-U133A 2.0 Affymetrix array (~18,400 transcripts, 22,000 probe sets) after isolating and purifying total RNA (Qiagen, RNAeasy). The control RNA samples were isolated from normal peripheral blood (PB) B-cell (AllCell, CA), normal PB T-cell (AllCell, CA) and normal lymph node (LN). Immunohisto-chemistry (IHC) confirmed tumor lineage and quantitative real time RT-PCR was performed on selected genes to validate the microarray study. The GEP data were processed and analyzed utilizing Affymetrix MAS 5.0 and GeneSpring 5.0 software. Our data were analyzed in the light of the published GEP of DLBCL (lymphochip and affymtrix) and the validated 10 prognostic genes (by IHC and real time RT-PCR). Results : Data are represented as “robust” increases or decreases of relative gene expression common to all 5 PTCL or 4 DLBCL patients respectively. The table shows the 5 most over-expressed genes in PTCL or DLBCL compared to normal T-cell (NT), B-cell (NB) and lymph node (LN). PTCL vs NT PTCL vs LN DLVCL vs NB DLBCL vs LN COL1A1 CHI3L1 CCL18 CCL18 CCL18 CCL18 VNN1 IGJ CXCL13 CCL5 UBD VNN1 IGFBP7 SH2D1A LYZ CD52 RARRES1 NKG7 CCL5 MAP4K1 Of the top 20 increases, 3 genes were common to PTCL and DLBCL when compared to normal T and B cells, while 11 were common when compared to normal LN. Comparison of genes common to normal B-cell and LN Vs DLBCL or PTCL and normal T-cell and LN Vs PTCL or DLBCL identified sets of genes that are commonly and differentially expressed in PTCL and/or DLBCL. The 4 DLBCL patients analyzed express 3 of 10 prognostic genes compared to normal B-cells and 7 of 10 prognostic genes compared to normal LN and fall into the non-germinal center subtype. Quantitative real time RT-PCR on 10 functionally distinct common over-expressed genes in the 5 PTCL (NOS) patients (Lumican, CCL18, CD14, CD54, CD106, CD163, α-PDGFR, HCK, ABCA1 and Tumor endothelial marker 6) validated the microarray data. Conclusions: GEP of PTCL (NOS) and DLBCL in combination with quantitative real time RT-PCR and IHC have identified a ‘molecular signature’ for PTCL and DLBCL based on a comparison to normal (B-cell, T-cell and LN) tissue. The categorization of the GEP based on the six hallmarks of cancer identifies a ‘tumor profile signature’ for PTCL and DLBCL and a number of novel targets for therapeutic intervention.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4997-4997
Author(s):  
David Gonzalez ◽  
Ricardo Morilla ◽  
Alison Morilla ◽  
Monica Else ◽  
Nnenna Osuji ◽  
...  

Abstract Hairy cell leukemia (HCL) is a rare B-cell disorder, with a variant form, which differs from the former in clinical behaviour, morphology and immunophenotype. The resemblance of these malignancies to splenic marginal zone lymphoma (SMZL), has led to the suggestion that they may share a common clonal progenitor that homes within the marginal zone of the splenic germinal centres. The immunophenotype and recent global gene expression results offer some support for this view, with a similar profile seen in HCL, and a subset of memory B-cells that are localized to the marginal zone. However, studies of the mutational status of the Ig genes are controversial. The majority of HCL cases are mutated, whereas up to 30% of SMZL cases are unmutated. Further investigation to understand these differences and to identify the cell of origin in these disorders is needed. In addition, there are no data on gene expression or VH mutation in HCL-variant (HCL-v), an entity with a poorer outcome and for which there is as yet no effective therapy. We have analysed a series of 13 HCL and 23 HCL-v, for the configuration of the Ig heavy chain rearrangements. VDJH rearrangements were PCR-amplified and sequenced using an automated 3130xL sequencer (Applied Biosystems, Warrington, UK). The sequences obtained were compared to the closest germline segments using V-base (CRI, Cambridge, UK) in order to study the level of somatic hypermutation as well as gene segment usage in IgH rearrangements. The majority of the HCL (92%) showed more than 2% deviation from the closest germline VH gene segment, compared to only 17/23 (74%) in the HCL-v cases. In the mutated cases, the percentage of mutation was similar for HCL and HCL-v (mean 5.8% and 5.9%, respectively), and none of the cases appeared to show ongoing hypermutation. Within the HCL-v group, 4 out of the 6 unmutated cases used VH4-34 segment, and the remaining 2 used VH1-03. Both genes are known to be associated with autoimmune diseases, and they are excluded from the normal and malignant memory plasma cell repertoires. Also, JH5 segment was found in 47% of the HCL-v, while it was absent in the HCL repertoire. This finding is particularly interesting, as JH5 segment is normally under-represented in most normal and malignant B-cells, except for a characteristic group of IgG-expressing chronic lymphocytic leukemias. Our data suggest that HCL-v is, unlike HCL, heterogeneous regarding IgVH mutations, but has restricted IgH repertoire that, at least in some cases, might be derived from activated, self-reactive B-lymphocytes that have not experienced the germinal-centre reaction.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 266-266 ◽  
Author(s):  
Enrico Tiacci ◽  
Verena Brune ◽  
Susan Eckerle ◽  
Wolfram Klapper ◽  
Ines Pfeil ◽  
...  

Abstract Abstract 266 Background. Previous gene expression profiling studies on cHL have been performed on whole tissue sections (mainly reflecting the prominent reactive background in which the few HRS cells are embedded), or on cHL cell lines. However, cultured HRS cells do not likely reflect primary HRS cells in all aspects, being derived from end-stage patients and from sites (e.g. pleural effusions or bone marrow) which are not typically involved by cHL and where HRS cells lost their dependence on the inflammatory microenvironment of the lymph node. Methods. ∼1000–2000 neoplastic cells were laser-microdissected from hematoxylin/eosin-stained frozen sections of lymph nodes taken at disease onset from patients with cHL (n=16) or with various B-cell lymphomas (n=35), including primary mediastinal B-cell lymphoma (PMBL) and nodular lymphocyte-predominant Hodgkin lymphoma (nLPHL). After two rounds of in vitro linear amplification, mRNA was hybridized to Affymetrix HG-U133 Plus 2.0 chips. Expression profiles were likewise generated from sorted cHL cell lines and several normal mature B-cell populations. Results. Primary and cultured HRS cells, although sharing hallmark cHL signatures such as high NF-kB transcriptional activity and lost B-cell identity, showed considerable transcriptional divergence in chemokine/chemokine receptor activity, extracellular matrix remodeling and cell adhesion (all enriched in primary HRS cells), as well as in proliferation (enriched in cultured HRS cells). Unsupervised and supervised analyses indicated that microdissected HRS cells of cHL represent a transcriptionally unique lymphoma entity, overall closer to nLPHL than to PMBL but with differential behavior of the cHL histological subtypes, being HRS cells of the lymphocyte-rich and mixed-cellularity subtypes close to nLPHL cells while HRS cells of NS and LD exhibited greater similarity to PMBL cells. HRS cells downregulated a large number of genes involved in cell cycle checkpoints and in the maintenance of genomic integrity and chromosomal stability, while upregulating gene and gene signatures involved in various oncogenic signaling pathways and in cell phenotype reprogramming. Comparisons with normal B cells highlighted the lack of consistent transcriptional similarity of HRS cells to bulk germinal center (GC) B cells or plasma cells and, interestingly, a more pronounced resemblance to CD30+ GC B cells and CD30+ extrafollicular B cells, two previously uncharacterized subsets that are transcriptionally distinct from the other mature B-cell types. Conclusions. Gene expression profiling of primary HRS cells provided several new insights into the biology and pathogenesis of cHL, its relatedness to other lymphomas and normal B cells, and its enigmatic phenotype. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 200 (11) ◽  
pp. 1467-1478 ◽  
Author(s):  
Jian Qiao Zhang ◽  
Cheryl Okumura ◽  
Thomas McCarty ◽  
Min Sun Shin ◽  
Partha Mukhopadhyay ◽  
...  

Germline mutations in Fas and Fasl induce nonmalignant T cell hyperplasia and systemic autoimmunity and also greatly increase the risk of B cell neoplasms. B lymphomas occurring in Fasl mutant (gld) mice usually are immunoglobulin (Ig) isotype switched, secrete Ig, and are plasmacytoid in appearance but lack Myc translocations characteristic of other plasma cell (PC) neoplasms. Here, we explore the relationship between B cell autoreactivity and transformation and use gene expression profiling to further classify gld plasmacytoid lymphomas (PLs) and to identify genes of potential importance in transformation. We found that the majority of PLs derive from antigen-experienced autoreactive B cells producing antinuclear antibody or rheumatoid factor and exhibit the skewed Ig V gene repertoire and Ig gene rearrangement patterns associated with these specificities. Gene expression profiling revealed that both primary and transplanted PLs share a transcriptional profile that places them at an early stage in PC differentiation and distinguishes them from other B cell neoplasms. In addition, genes were identified whose altered expression might be relevant in lymphomagenesis. Our findings provide a strong case for targeted transformation of autoreactive B cells in gld mice and establish a valuable model for understanding the relationship between systemic autoimmunity and B cell neoplasia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2938-2938
Author(s):  
Frank Dicker ◽  
Susanne Schnittger ◽  
Claudia Schoch ◽  
Alexander Kohlmann ◽  
Wei-Min Liu ◽  
...  

Abstract The lack of somatic mutations of the immunoglobulin variable heavy chain (IgVH) gene has been established as poor prognostic marker for chronic lymphocytic leukemia (CLL) patients at early stage disease. Expression of the non receptor tyrosine kinase zeta chain associated protein (ZAP-70) was proposed as a surrogate marker for an unmutated IgVH, however, up to 30% discordant samples have been reported depending on the respective study. B cell receptor (BCR) mediated signaling is enhanced by ZAP-70 expression in CLL cells in vitro and ZAP-70 expression also tends to decrease the time from diagnosis to treatment irrespective of the IgVH status. Therefore, we wanted to identify differentially expressed genes between the ZAP-70 positive and negative CLLs by gene expression profiling of peripheral blood mononuclear cells (PBMCs) using Affymetrix microarrays (HG-U133 Plus 2.0). ZAP-70 expression was analyzed by quantitative real time PCR of CD19 purified (purity > 99%) PBMCs (n=62) using a LightCycler instrument. Expression of ZAP-70 mRNA was normalized against the housekeeping gene ABL and a relative quantitation against Jurkat T cells as a calibrator was performed. Results are expressed as normalized ratio and a cut-off of 0.5 normalized ratio gave the best correlation to the IgVH status with 77% concordant samples between ZAP-70 expression and the IgVH status. The discordant samples consisted of 5 unmutated IgVHs in the ZAP-70 negative group and 9 mutated in the ZAP-70 positive group. In a second step PBMCs of the same samples were analyzed by gene expression profiling and differentially expressed genes were identified by t-test. Among the two best genes that could be used in a classification algorithm (SVM) to distinguish between the 2 subsets with 92% accuracy were ZAP-70 and B cell scaffold protein with ankyrin repeats (BANK1). The expression of BANK1 was increased 3–4-fold in the ZAP-70 negative compared to the ZAP-70 positive CLL subset (P = 0,001). In the literature, BANK1 has been identified in human BCR expressing B cells and seems to be B cell restricted. In B cells the scaffolding protein BANK1 enhances BCR-mediated Ca2+-signaling, a signaling pathway that is also enhanced by ZAP-70 expression in CLL B cells. Based on these data we show that increased BANK1 expression correlates with a ZAP-70 negative status in CLL B cells. The functional consequences of BANK1 expression in the ZAP-70 negative subset of CLL B cells, which are usually associated with a more favorable prognosis, still need to be established further.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1352-1352
Author(s):  
Marit E. Hystad ◽  
Trond H. Bo ◽  
Edith Rian ◽  
June H. Myklebust ◽  
Einar Sivertsen ◽  
...  

Abstract B cells develop from hematopoietic stem cells (HSC) in the bone marrow (BM) through a number of distinct stages before they migrate to the periphery as naïve mature B lymphocytes. These developmental stages can be identified by expression of cell surface antigens and Ig gene rearrangement status. The aim of this study was to characterize the earliest steps of normal human B cell development by gene expression profiling. Immunomagnetic selection and subsequent fluorescence-activated cell sorting (FACS) were used to isolate five populations from adult human BM: CD34+CD38− (HSC), CD34+CD10+CD19− early lymphoid progenitor cells (ELP), CD34+CD10+CD19+IgM− progenitor B cells (pro-B), CD34−CD10+CD19+IgM− precursor B cells (pre-B) and CD34−CD10+CD19+IgM+ immature B cells (IM). Total RNA was extracted from the purified cell populations, amplified and hybridized to Lymphochip cDNA microarrays. Six independent experiments from different donors were performed for each cell population. Expression of the genes encoding the selection markers confirmed the validity of the approach. Interestingly, genes necessary for the V(D)J-recombination such as RAG-1, RAG-2, TdT and ADA showed higher gene expression in the ELP population than in the HSC. In contrast, the transcription factors E2A, EBF, and Pax-5, which are all essential for early B-cell development, were first turned on in pro-B cells, in accordance with the B-cell lineage commitment. The ELP did not express B, T or NK lineage markers, except for a higher expression level of CD2 in the ELP population than in the four other cell populations. Taken together, the expression pattern of CD2 and the V(D)J-recombination genes in the ELP population, indicate that these cells have developed a lymphocyte potential, but are not fully committed to B-lineage cells. Hierarchical cluster analysis of the 758 differentially expressed genes (differences in relative expression by a factor of two or more and with maximum10% FDR) revealed a pattern that clearly separated the five consecutive cell populations. Furthermore, we created expression signatures based on information from Gene Ontology (GO) http://source.stanford.edu/cgi-bin/source/sourceSearch. One of the clearest distinctions between the gene expressions of the five developmental populations involved genes associated with proliferation, and showed that the HSC and IM populations are relatively indolent while the pro-B and pre-B populations comprised high expression levels of nearly all the proliferation associated genes. Finally, we examined in further detail the transitions between HSC, ELP and pro B cells. We found 25 genes to be differently expressed in the ELP population in comparison to the HSC and pro-B populations, including IGJ, BCL2 and BLNK. To identify combinations of markers that could better discriminate the ELP population, we also performed a gene pair class separation test. This resulted in 68 gene pairs with score above 10 that were denoted very good discriminators. For several of the markers the differences in gene expression were verified at the protein level by five colour FACS analysis. Taken together, these results provide new insight into the molecular processes that take place in the early human B cell differentiation, and in particular provide new information regarding expression of genes in the ELP population.


2019 ◽  
Vol 3 (3) ◽  
pp. 384-396 ◽  
Author(s):  
Alberto J. Arribas ◽  
Andrea Rinaldi ◽  
Giorgia Chiodin ◽  
Ivo Kwee ◽  
Afua Adjeiwaa Mensah ◽  
...  

Abstract Classic hairy cell leukemia (HCL) is a tumor of mature clonal B cells with unique genetic, morphologic, and phenotypic features. DNA methylation profiling has provided a new tier of investigation to gain insight into the origin and behavior of B-cell malignancies; however, the methylation profile of HCL has not been specifically investigated. DNA methylation profiling was analyzed with the Infinium HumanMethylation27 array in 41 mature B-cell tumors, including 11 HCL, 7 splenic marginal zone lymphomas (SMZLs), and chronic lymphocytic leukemia with an unmutated (n = 7) or mutated (n = 6) immunoglobulin gene heavy chain variable (IGHV) region or using IGHV3-21 (n = 10). Methylation profiles of nontumor B-cell subsets and gene expression profiling data were obtained from public databases. HCL had a methylation signature distinct from each B-cell tumor entity, including the closest entity, SMZL. Comparison with normal B-cell subsets revealed the strongest similarity with postgerminal center (GC) B cells and a clear separation from pre-GC and GC cellular programs. Comparison of the integrated analysis with post-GC B cells revealed significant hypomethylation and overexpression of BCR–TLR–NF-κB and BRAF-MAPK signaling pathways and cell adhesion, as well as hypermethylation and underexpression of cell-differentiation markers and methylated genes in cancer, suggesting regulation of the transformed hairy cells through specific components of the B-cell receptor and the BRAF signaling pathways. Our data identify a specific methylation profile of HCL, which may help to distinguish it from other mature B-cell tumors.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3526-3526 ◽  
Author(s):  
Stefan Nagel ◽  
Stefan Ehrentraut ◽  
Corinna Meyer ◽  
Maren Kaufmann ◽  
Hans G Drexler ◽  
...  

Abstract Hairy cell leukemia (HCL) is a rare chronic B-cell lymphoproliferative disorder where the malignant B-cells manifest a “hairy” appearance under the microscope. Recent studies have identified BRAF V600E mutations in most HCL patients, highlighting this abnormality as a molecular hallmark for this disease. However, mutated BRAF occurs widely – already described in several solid tumors, including melanoma, thyroid and colorectal carcinomas, indicating that BRAF V600E is not pathognomonic in HCL. Cell lines originating from HCL patients lack BRAF mutations but retain the typical piliferous morphology and the appropriate HCL immunophenotype (CD19, CD11c, CD103, CD25, CD123), thus constituting tools for identifying alternative mechanisms of leukemogenesis in this disease entity. Genomic aberrations in hematopoietic tumors recurrently target loci bearing genes involved in malignant transformation. These genes may include both candidate biomarkers and potential therapeutic targets. To identify such genes in HCL we here combined genomic profiling and gene expression quantification of a well characterized HCL cell line containing several chromosomal aberrations. The expression levels of genomically targeted genes were compared to HCL control cell lines, identifying 91 deregulated genes. Gene set enrichment analysis of which indicated apoptosis, cell cycle regulation and DNA damage response (DDR) as altered processes in HCL. Accordingly, REL (NFkB and apoptosis), CDK6 and BRAF (cell cycle), ATM and CUTL1 (DDR) comprised prominent target genes overexpressed in this cell line. The same genes were found to be conspicuously expressed in HCL patient samples in silico (Fernandez et al., 2010; Gene Expression Omnibus GSE16455), supporting their clinical significance. Treatments of HCL cell lines for particular siRNA-mediated gene knockdowns and with selective pharmacological inhibitors helped to reveal a regulatory network highlighting NFkB at a central position. Consistently, focused analysis of expression profiling data of several cell lines supported elevated NFkB-pathway activity in HCL and ABC-DLBCL when compared to GC-DLBCL. In conclusion, we identified deregulated genes and multiple mechanisms which contribute to aberrantly activated NFkB-pathway in HCL. Therefore, NFkB may represent a B-cell specific hallmark of HCL and a promising novel therapeutic target most notably in patients lacking BRAF mutations in this entity. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 359-359
Author(s):  
Coraline Mlynarczyk ◽  
Matthew Teater ◽  
Juhee Pae ◽  
Theinmozhi Arulraj ◽  
Christopher R Chin ◽  
...  

Abstract Somatic missense mutations of BTG1 are exclusive to germinal center (GC)-derived B cell lymphomas (~12% of DLBCLs) and are most prevalent in ABC-DLBCL (p=0.0184 vs GCB-DLBCL), particularly in the MCD/cluster 5 subtype, which features extranodal dissemination and unfavorable outcome. However, the relevance, mechanism of action and biological contribution of BTG1 mutations have not been studied. Using a rigorous genomic covariate analysis, we identified BTG1 mutations as a top genetic driver in DLBCL. Furthermore, molecular dynamics simulations indicated that BTG1 recurrent mutations, including the most frequent Q36H, disrupted the protein structure, with likely deleterious functional consequences. To investigate the effect of BTG1 mutation in GC B cells, we generated a conditional Btg1Q36H knock in mouse crossed to the B cell specific Cd19Cre line. Surprisingly, there was no apparent phenotype in GC B cells or other B cell populations. However, placing Btg1 Q36H and WT GC B cells in competition within the same mouse through adoptive transfer revealed a dramatic competitive advantage of Btg1 Q36H cells, virtually taking over the GC reaction. To gain further insight into this striking fitness advantage, we performed RNAseq in Btg1 Q36H GCs, which showed marked enrichment for genes induced in positively selected GC B cells, including MYC targets and biosynthetic pathways. The same genes were also enriched in BTG1 mutant DLBCL patients in 2 independent cohorts. Furthermore, Btg1 Q36H GC B cells displayed greater RNA content and cell size, reflecting increased fitness. Positive selection normally triggers a brief Myc pulse in GC B cells. We therefore crossed our Btg1Q36H mice to the MycGFPprotein fusion reporter and observed higher proportion of Myc GFP+ cells in Btg1 Q36H GCs. For mechanistic studies, we generated isogenic BTG1 Q36H or BTG1 WT human DLBCL cell lines. BTG1 Q36H cells exhibited enrichment for the same positively selected GC B and MYC target genes, as well as greater RNA content and cell size. BTG1 family members were suggested to interact with RNA. Performing RNA-immunoprecipitation, we discovered that ~800 transcripts associated with BTG1 WT, but not BTG1 Q36H. Notably, these corresponded to the same positively selected GC B and MYC target genes, including MYC itself. BTG1 was shown to regulate mRNA stability in other cell types. However, BTG1 Q36H did not alter MYC mRNA stability and instead facilitated MYC protein synthesis, thus disrupting a novel GC context-specific checkpoint mechanism, whereby BTG1 normally attenuates spurious MYC translation to tightly restrict fitness potential. In GC B cells, Myc induction coincides with S phase entry, but G2/M progression requires re-entry into the proliferative dark zone. To characterize GC dynamics in vivo, we performed targeted single cell RNAseq in competing Btg1 Q36H and WT GC B cells and noted earlier and higher proportion of positively selected Btg1 Q36H GC B cells having committed to G2/M and the proliferative program. We confirmed faster S phase completion in competing Btg1 Q36H GC B cells by in vivo EdU/BrdU labelling and greater re-entry into the proliferative dark zone by in vivo antigen delivery to synchronize GC B cells at the time of positive selection. Given that MCD-DLBCLs express high levels of BCL2, we crossed our Btg1Q36H mice to the VavP-Bcl2 model. As compared to VavP-Bcl2, VavP-Bcl2+Btg1 Q36H mice displayed shorter survival (p=0.0005), earlier onset of lymphoma, dysplastic B cell infiltration into non lymphoid organs and they contained highly mutated, selected and clonal tumor B cells. Moribund VavP-Bcl2+Btg1 Q36H mice uniquely featured sheets of large, immunoblastic lymphoma cells, characteristic of ABC-DLBCLs. Most notably, examining ABC-DLBCLs from 5 independent cohorts showed inferior clinical outcome for BTG1 mutant patients (p=0.0011) and independent association of BTG1 mutation with inferior overall survival by multivariable Cox regression (p=0.0190). Collectively, we find that BTG1 mutations mediate lymphomagenesis through an entirely novel mechanism of action that recapitulates the embryonic MYC-dependent "super-competitive" phenotype originally described in Drosophila imaginal disc cells. In the GC, "super-competition" is provided by BTG1 mutation via a subtle acceleration of MYC induction and GC dynamics, conferring dramatic fitness and the potential to transform into aggressive lymphomas. Disclosures Hoehn: Prellis Biologics: Consultancy. Elemento: Janssen: Research Funding; Freenome: Consultancy, Other: Current equity holder in a privately-held company; Volastra Therapeutics: Consultancy, Other: Current equity holder, Research Funding; Owkin: Consultancy, Other: Current equity holder; Champions Oncology: Consultancy; One Three Biotech: Consultancy, Other: Current equity holder; Eli Lilly: Research Funding; AstraZeneca: Research Funding; Johnson and Johnson: Research Funding. Scott: NanoString Technologies: Patents & Royalties: Patent describing measuring the proliferation signature in MCL using gene expression profiling.; BC Cancer: Patents & Royalties: Patent describing assigning DLBCL COO by gene expression profiling--licensed to NanoString Technologies. Patent describing measuring the proliferation signature in MCL using gene expression profiling. ; AstraZeneca: Consultancy; Abbvie: Consultancy; Celgene: Consultancy; Incyte: Consultancy; Janssen: Consultancy, Research Funding; Rich/Genentech: Research Funding. Melnick: Constellation: Consultancy; Epizyme: Consultancy; Daiichi Sankyo: Research Funding; Sanofi: Research Funding; Janssen Pharmaceuticals: Research Funding; KDAC Pharma: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document