scholarly journals Germinal center reutilization by newly activated B cells

2009 ◽  
Vol 206 (13) ◽  
pp. 2907-2914 ◽  
Author(s):  
Tanja A. Schwickert ◽  
Boris Alabyev ◽  
Tim Manser ◽  
Michel C. Nussenzweig

Germinal centers (GCs) are specialized structures in which B lymphocytes undergo clonal expansion, class switch recombination, somatic hypermutation, and affinity maturation. Although these structures were previously thought to contain a limited number of isolated B cell clones, recent in vivo imaging studies revealed that they are in fact dynamic and appear to be open to their environment. We demonstrate that B cells can colonize heterologous GCs. Invasion of primary GCs after subsequent immunization is most efficient when T cell help is shared by the two immune responses; however, it also occurs when the immune responses are entirely unrelated. We conclude that GCs are dynamic anatomical structures that can be reutilized by newly activated B cells during immune responses.

Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1448-1455 ◽  
Author(s):  
Julia Rastelli ◽  
Cornelia Hömig-Hölzel ◽  
Jane Seagal ◽  
Werner Müller ◽  
Andrea C. Hermann ◽  
...  

AbstractThe Epstein-Barr virus (EBV) protein LMP1 is considered to be a functional homologue of the CD40 receptor. However, in contrast to the latter, LMP1 is a constitutively active signaling molecule. To compare B cell–specific LMP1 and CD40 signaling in an unambiguous manner, we generated transgenic mice conditionally expressing a CD40/LMP1 fusion protein, which retained the LMP1 cytoplasmic tail but has lost the constitutive activity of LMP1 and needs to be activated by the CD40 ligand. We show that LMP1 signaling can completely substitute CD40 signaling in B cells, leading to normal B-cell development, activation, and immune responses including class-switch recombination, germinal center formation, and somatic hypermutation. In addition, the LMP1-signaling domain has a unique property in that it can induce class-switch recombination to IgG1 independent of cytokines. Thus, our data indicate that LMP1 has evolved to imitate T-helper cell function allowing activation, proliferation, and differentiation of EBV-infected B cells independent of T cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Carolin Ulbricht ◽  
Ruth Leben ◽  
Asylkhan Rakhymzhan ◽  
Frank Kirchhoff ◽  
Lars Nitschke ◽  
...  

Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress–responses, or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the Förster resonance energy transfer (FRET)-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial immune responses and detrimental autoimmunity.


2013 ◽  
Vol 211 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Radhika Goenka ◽  
Andrew H. Matthews ◽  
Bochao Zhang ◽  
Patrick J. O’Neill ◽  
Jean L. Scholz ◽  
...  

We have assessed the role of B lymphocyte stimulator (BLyS) and its receptors in the germinal center (GC) reaction and affinity maturation. Despite ample BLyS retention on B cells in follicular (FO) regions, the GC microenvironment lacks substantial BLyS. This reflects IL-21–mediated down-regulation of the BLyS receptor TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) on GC B cells, thus limiting their capacity for BLyS binding and retention. Within the GC, FO helper T cells (TFH cells) provide a local source of BLyS. Whereas T cell–derived BLyS is dispensable for normal GC cellularity and somatic hypermutation, it is required for the efficient selection of high affinity GC B cell clones. These findings suggest that during affinity maturation, high affinity clones rely on TFH-derived BLyS for their persistence.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1421-1427 ◽  
Author(s):  
Caroline Le Morvan ◽  
Eric Pinaud ◽  
Catherine Decourt ◽  
Armelle Cuvillier ◽  
Michel Cogné

Abstract The more distal enhancers of the immunoglobulin heavy-chain 3′ regulatory region, hs3b and hs4, were recently demonstrated as master control elements of germline transcription and class switch recombination to most immunoglobulin constant genes. In addition, they were shown to enhance the accumulation of somatic mutations on linked transgenes. Since somatic hypermutation and class switch recombination are tightly linked processes, their common dependency on the endogenous locus 3′ enhancers could be an attractive hypothesis. VDJ structure and somatic hypermutation were analyzed in B cells from mice carrying either a heterozygous or a homozygous deletion of these enhancers. We find that hs3b and hs4 are dispensable both for VDJ assembly and for the occurrence of mutations at a physiologic frequency in the endogenous locus. In addition, we show that cells functionally expressing the immunoglobulin M (IgM) class B-cell receptor encoded by an hs3b/hs4-deficient locus were fully able to enter germinal centers, undergo affinity maturation, and yield specific antibody responses in homozygous mutant mice, where IgG1 antibodies compensated for the defect in other IgG isotypes. By contrast, analysis of Peyer patches from heterozygous animals showed that peanut agglutinin (PNAhigh) B cells functionally expressing the hs3b/hs4-deficient allele were dramatically outclassed by B cells expressing the wild-type locus and normally switching to IgA. This study thus also highlights the role of germinal centers in the competition between B cells for affinity maturation and suggests that membrane IgA may promote recruitment in an activated B-cell compartment, or proliferation of activated B cells, more efficiently than IgM in Peyer patches.


2015 ◽  
Vol 370 (1676) ◽  
pp. 20140245 ◽  
Author(s):  
Lauren M. Childs ◽  
Edward B. Baskerville ◽  
Sarah Cobey

Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2370-2370
Author(s):  
Sridhar Chaganti ◽  
Noelia Begue Pastor ◽  
Gouri Baldwin ◽  
Claire Shannon-Lowe ◽  
Regina Feederle ◽  
...  

Abstract Following primary infection, Epstein-Barr virus (EBV) establishes life long persistence in the host IgD− CD27+ memory B cell compartment rather than the IgD+ CD27+ marginal zone (MZ)-like or the IgD+ CD27− naïve B cell compartments. One possible explanation for such exclusive persistence in memory B cells is that EBV preferentially infects memory B cells. Alternatively, the virus may infect all B cell subsets but then drive MZ and naïve B cells to acquire the Ig isotype-switched phenotype and hypermutated Ig genotype of memory cells. Here we ask whether there is any evidence for one or other hypothesis from in vitro experiments. B cells from healthy donor blood samples were FACS sorted on the basis of IgD/CD27 expression into naïve, MZ, and memory B cell subsets with purities of >99%, >97% and >98% respectively. Analysis of the IgVH sequence further confirmed purity of the FACS sorted B cell subsets. Accordingly, 102 of 105 IgVH sequences amplified from purified naïve B cells were germ-line where as the vast majority of sequences amplified from MZ and memory B cells were mutated. All three B cell subsets expressed equal amounts of CD21 (EBV receptor on B cells), bound similar amounts of virus, and transformed with equal efficiency to establish B lymphoblastoid cell lines (LCLs) in vitro. Naïve B cell transformants upregulated CD27 expression but retained the IgM+, IgD+ phenotype as determined by FACS analysis and RT-PCR; MZ-B derived LCLs likewise were IgM+, IgD+, CD27+; and memory-B derived LCLs were consistently CD27+, IgD− and expressed either IgG, IgA or in some cases IgM. Therefore, EBV infection per se did not induce class switching. However, both naïve and MZ-B derived LCLs could still be induced to switch to IgG in the presence of CD40 ligand and IL-4; signals that are normally provided by T cells in vivo. To assess if EBV infection might drive Ig hypermutation, we carried out IgVH sequence analysis on the naïve-B derived LCL clones. Interestingly, 42 of 114 clonal IgVH sequences amplified from naïve-B derived LCLs had 3 or more mutations and the patterns of mutation seen were consistent with that produced by somatic hypermutation (SHM). Furthermore, within some naïve-B cell derived LCL clones, there were both germ-line and mutated sequences all sharing the same VDJ rearrangement (CDR3 sequence), again implying sequence diversification following EBV transformation of a single naïve B cell. Some intraclonal variation of the already hypermutated IgVH sequence was also noted in memory and MZ-B derived LCLs further suggesting ongoing mutational activity. Consistent with this, activation-induced cytidine deaminase (AID) expression was upregulated in transformants as assessed by real time RT-PCR. Our in vitro data is therefore compatible with a model of EBV persistence where the virus infects all mature B cell subsets but then drives infected naïve B cells to acquire a memory genotype by inducing SHM. In addition, EBV infected naïve and MZ-B cells may undergo Ig class switching to acquire the IgD− CD27+ memory phenotype in the presence of T cell help in vivo. EBV’s ability to induce SHM may also contribute to the lymphomagenic potential of the virus in addition to its B cell transforming and growth promoting properties.


2016 ◽  
Vol 213 (6) ◽  
pp. 993-1009 ◽  
Author(s):  
Oliver Bannard ◽  
Simon J. McGowan ◽  
Jonatan Ersching ◽  
Satoshi Ishido ◽  
Gabriel D. Victora ◽  
...  

Antibody affinity maturation occurs in germinal centers (GCs) through iterative rounds of somatic hypermutation and selection. Selection involves B cells competing for T cell help based on the amount of antigen they capture and present on their MHC class II (MHCII) proteins. How GC B cells are able to rapidly and repeatedly transition between mutating their B cell receptor genes and then being selected shortly after is not known. We report that MHCII surface levels and degradation are dynamically regulated in GC B cells. Through ectopic expression of a photoconvertible MHCII-mKikGR chimeric gene, we found that individual GC B cells differed in the rates of MHCII protein turnover. Fluctuations in surface MHCII levels were dependent on ubiquitination and the E3 ligase March1. Increases in March1 expression in centroblasts correlated with decreases in surface MHCII levels, whereas CD83 expression in centrocytes helped to stabilize MHCII at that stage. Defects in MHCII ubiquitination caused GC B cells to accumulate greater amounts of a specific peptide–MHCII (pMHCII), suggesting that MHCII turnover facilitates the replacement of old complexes. We propose that pMHCII complexes are periodically targeted for degradation in centroblasts to favor the presentation of recently acquired antigens, thereby promoting the fidelity and efficiency of selection.


2009 ◽  
Vol 206 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Dominik Schenten ◽  
Sven Kracker ◽  
Gloria Esposito ◽  
Sonia Franco ◽  
Ulf Klein ◽  
...  

Polζ is an error-prone DNA polymerase that is critical for embryonic development and maintenance of genome stability. To analyze its suggested role in somatic hypermutation (SHM) and possible contribution to DNA double-strand break (DSB) repair in class switch recombination (CSR), we ablated Rev3, the catalytic subunit of Polζ, selectively in mature B cells in vivo. The frequency of somatic mutation was reduced in the mutant cells but the pattern of SHM was unaffected. Rev3-deficient B cells also exhibited pronounced chromosomal instability and impaired proliferation capacity. Although the data thus argue against a direct role of Polζ in SHM, Polζ deficiency directly interfered with CSR in that activated Rev3-deficient B cells exhibited a reduced efficiency of CSR and an increased frequency of DNA breaks in the immunoglobulin H locus. Based on our results, we suggest a nonredundant role of Polζ in DNA DSB repair through nonhomologous end joining.


Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1440-1449 ◽  
Author(s):  
Felix M. Wensveen ◽  
Ingrid A. M. Derks ◽  
Klaas P. J. M. van Gisbergen ◽  
Alex M. de Bruin ◽  
Joost C. M. Meijers ◽  
...  

Abstract The efficiency of humoral immune responses depends on the selective outgrowth of B cells and plasmacells that produce high affinity antibodies. The factors responsible for affinity maturation of B cell clones in the germinal center (GC) have been well established but selection mechanisms that allow clones to enter the GC are largely unknown. Here we identify apoptosis, regulated by the proapoptotic BH3-only member Noxa (Pmaip1), as a critical factor for the selection of high-affinity clones during B cell expansion after antigen triggering. Noxa is induced in activated B cells, and its ablation provides a survival advantage both in vitro and in vivo. After immunization or influenza infection, Noxa−/− mice display enlarged GCs, in which B cells with reduced antigen affinity accumulate. As a consequence, Noxa−/− mice mount low affinity antibody responses compared with wild-type animals. Importantly, the low affinity responses correlate with increased immunoglobulin diversity, and cannot be corrected by booster immunization. Thus, normal elimination of low affinity cells favors outgrowth of the remaining high-affinity clones, and this is mandatory for the generation of proper antibody responses. Manipulation of this process may alter the breadth of antibody responses after immunization.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 861-861
Author(s):  
Srividya Swaminathan ◽  
Lars Klemm ◽  
Eugene Park ◽  
Anthony M Ford ◽  
Soo-mi Kweon ◽  
...  

Abstract Background and hypothesis: Childhood pre-B acute lymphoblastic leukemia (ALL) can frequently be retraced to a pre-leukemic clone carrying a prenatally acquired genetic lesion (e.g. ETV6-RUNX1gene rearrangement). After birth, pre-leukemic clones can acquire secondary mutations and, hence, evolve towards overt leukemia. While this concept is well established, the mechanism(s) driving clonal evolution are not known. Epidemiological findings hint to a role of delayed childhood infections and chronic inflammation as etiologic factors of childhood ALL, but do not illuminate mechanism of clonal evolution of pre-leukemic cells. In this study, we demonstrate that cooperation between the AID cytosine deaminase and the RAG1/RAG2 V(D)J recombinase promotes acquisition of secondary genetic lesions that promote progress of pre-leukemic B cell precursors towards full-blown leukemia. Results: The enzymatic activity of RAG1/RAG2 (VDJ recombination) and AID (somatic hypermutation, class-switch recombination) are strictly segregated to early and late stages of B cell development, respectively. While RAG1 and RAG2 are actively expressed at stages of early B cell development (bone marrow and fetal liver) that give rise to pre-B ALL, little is known about the function of AID in early B-lymphopoesis. As the involvement of AID in pre-B leukemic clonal evolution is incumbent on its expression during early stages of B-lymphopoesis, we tested CD19+ pre-B cells isolated from human bone marrow (BM) for indicators of AID activity, namely, somatic hypermutation (SHM) and class switch recombination (CSR). Interestingly, most pre-B cell clones carry rearranged Ig VH region genes that are mutated at low levels (average mutation frequency 26 x 10-3 bp). Likewise, pre-B cells isolated from fetal liver tissues (three donors; 10-19 weeks of gestation) carried Ig VH region genes mutated at low levels (average mutation frequency 14 x 10-3 bp). In addition, about one third of fetal liver pre-B cells had undergone CSR to Cγ3, Cγ1 and Cα regions. These findings highlight the previously unknown function of AID in two important sites of early human B-lymphopoesis. Based on these results, we hypothesized that a specific B cell subset during early pro- and pre-B cell differentiation can concomitantly express both AID and the RAGs and, hence, would be particularly susceptible to clonal evolution of cells that carry a pre-leukemic lesion. Our subsequent studies identified late pre-B cells (Fraction D) as a natural subset of increased genetic vulnerability. Late pre-B cells downregulate IL7 receptor/Stat5 signaling, which enables expression of RAG1 and RAG2 and immunoglobulin light chain gene rearrangement. Loss of IL7 receptor/Stat5 signaling also removes an important safeguard against premature expression of AID. Therefore, late pre-B cells are poised to express AID at high levels in response to inflammatory stimuli (e.g. LPS) in concurrence with RAG1 and RAG2. Studying clonal evolution of patient-derived pre-B ALL cells, we found evidence for concomitant AID and RAG1/RAG2 activity. Further studying a genetic mouse model for pre-leukemic pre-B cells carrying ETV6-RUNX1, we found that repeated exposure to LPS can cause overt leukemia but not in the absence of either AID or Rag1. Additionally, whole exome sequencing of human B cell clones that were engineered to express AID, RAG1/RAG2 alone or in combination revealed that concurrent expression of AID with RAG1/RAG2 dramatically increased the frequency of structural chromosomal lesions. Conclusion: Consistent with epidemiological findings on the etiology of childhood ALL, we conclude that reduced cytokine signaling (here, IL7R) in late pre-B cells renders pre-leukemic clones distinctively vulnerable to genetic lesions that can be acquired in the context of repeated exposure to inflammatory stimuli (e.g. chronic and recurrent infections during childhood). Our results support a role for AID and RAGs cooperation for the generation of secondary lesions in leukemia subgroups that require additional leukemogenic events, and therefore, provide the genetic and molecular basis to support the Delayed Infections Hypothesis for leukemia progression in children. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document