scholarly journals The Wnt agonist R-spondin1 regulates systemic graft-versus-host disease by protecting intestinal stem cells

2011 ◽  
Vol 208 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Shuichiro Takashima ◽  
Masanori Kadowaki ◽  
Kazutoshi Aoyama ◽  
Motoko Koyama ◽  
Takeshi Oshima ◽  
...  

Graft-versus-host disease (GVHD) is a major complication of allogeneic bone marrow transplantation (BMT), and damage to the gastrointestinal (GI) tract plays a critical role in amplifying systemic disease. Intestinal stem cells (ISCs) play a pivotal role not only in physiological tissue renewal but also in regeneration of the intestinal epithelium after injury. In this study, we have discovered that pretransplant conditioning regimen damaged ISCs; however, the ISCs rapidly recovered and restored the normal architecture of the intestine. ISCs are targets of GVHD, and this process of ISC recovery was markedly inhibited with the development of GVHD. Injection of Wnt agonist R-spondin1 (R-Spo1) protected against ISC damage, enhanced restoration of injured intestinal epithelium, and inhibited subsequent inflammatory cytokine cascades. R-Spo1 ameliorated systemic GVHD after allogeneic BMT by a mechanism dependent on repair of conditioning-induced GI tract injury. Our results demonstrate for the first time that ISC damage plays a central role in amplifying systemic GVHD; therefore, we propose ISC protection by R-Spo1 as a novel strategy to improve the outcome of allogeneic BMT.

Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2754-2759 ◽  
Author(s):  
Geoffrey R. Hill ◽  
James L. M. Ferrara

Acute graft-versus-host disease (GVHD), the major complication of allogeneic bone marrow transplantation (BMT), limits the application of this curative but toxic therapy. Studies of inflammatory pathways involved in GVHD in animals have shown that the gastrointestinal (GI) tract plays a major role in the amplification of systemic disease. Damage to the GI tract increases the translocation of inflammatory stimuli such as endotoxin, which promotes further inflammation and additional GI tract damage. The GI tract is therefore critical to the propagation of the “cytokine storm” characteristic of acute GVHD. Experimental approaches to the prevention of GVHD include reducing the damage to the GI tract by fortification of the GI mucosal barrier through novel “cytokine shields” such as IL-11 or keratinocyte growth factor. Such strategies have reduced GVHD while preserving a graft-versus-leukemia effect in animal models, and they now deserve formal testing in carefully designed clinical trials.


Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3300-3307 ◽  
Author(s):  
Christian A. Wysocki ◽  
Qi Jiang ◽  
Angela Panoskaltsis-Mortari ◽  
Patricia A. Taylor ◽  
Karen P. McKinnon ◽  
...  

AbstractCD4+CD25+ regulatory T cells (Tregs) have been shown to inhibit graft-versus-host disease (GVHD) in murine models, and this suppression was mediated by Tregs expressing the lymphoid homing molecule l-selectin. Here, we demonstrate that Tregs lacking expression of the chemokine receptor CCR5 were far less effective in preventing lethality from GVHD. Survival of irradiated recipient animals given transplants supplemented with CCR5-/- Tregs was significantly decreased, and GVHD scores were enhanced compared with animals receiving wild-type (WT) Tregs. CCR5-/- Tregs were functional in suppressing T-cell proliferation in vitro and ex vivo. However, although the accumulation of Tregs within lymphoid tissues during the first week after transplantation was not dependent on CCR5, the lack of function of CCR5-/- Tregs correlated with impaired accumulation of these cells in the liver, lung, spleen, and mesenteric lymph node, more than one week after transplantation. These data are the first to definitively demonstrate a requirement for CCR5 in Treg function, and indicate that in addition to their previously defined role in inhibiting effector T-cell expansion in lymphoid tissues during GVHD, later recruitment of Tregs to both lymphoid tissues and GVHD target organs is important in their ability to prolong survival after allogeneic bone marrow transplantation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 66-66 ◽  
Author(s):  
Shuichiro Takashima ◽  
Kazutoshi Aoyama ◽  
Motoko Koyama ◽  
Daigo Hashimoto ◽  
Takeshi Oshima ◽  
...  

Abstract Damage to the gastrointestinal (GI) tract by pretransplant conditioning regimen plays a critical role in amplifying graft-versus-host disease (GVHD). Thus protection of the GI tract from conditioning may represent a novel approach to prevent GVHD. R-Spondin1 (R-Spo1) is a novel class of soluble activator for Wnt/□-catenin signaling, and has potent and specific proliferative effects on the intestinal crypt cells; injection of R-Spo1 protects mice from chemotherapy-induced intestinal mucositis. We therefore hypothesized that administration of R-Spo1 could modulate GVHD by reducing the GI tract damage and improve outcome of allogeneic bone marrow transplantation (BMT). Lethally irradiated B6D2F1 (H-2b/d) mice were injected with 5 × 106 BM and 2 × 106 T cells from MHC-mismatched B6 (H-2b) donors on day 0. Mice were intravenously injected with 200 μg of R-Spo1 or diluent from days −3 to −1 and +1 to +3 after BMT. In vivo labeling assay of mitotic cells with BrdU demonstrated that the proliferative index, as determined by the percentages of BrdU-positive cells among crypt epithelial cells, was significantly greater in the small intestine of R-Spo1 treated mice than controls 4 days after BMT (57% ± 3% vs 48% ± 1%, P<0.05). Analysis of the mesenteric lymph nodes and spleens on day +7 demonstrated significantly reduced expansion of donor T cells in R-Spo1 treated recipients in association with reduced serum levels of IFN-□ and TNF-□ on day +7 when compared to controls (Table). GVHD was severe in allogeneic controls, with 12.5% survival by day +40, whereas 62.5% of R-Spo1-treated animals survived this period (Table). Histopathologic examination of the small and large bowel and liver showed significantly reduced GVHD pathology in R-Spo1 treated animals than in controls (Table). A flowcytometric analysis of the spleen and thymus after BMT showed that administration of R-Spo1 did not impair donor cell engraftment and T and B cell immune reconstitution. We next evaluated the impact of R-Spo1 on graft-versus-leukemia (GVL) effects. BMT was performed similarly as above with the addition of 5 × 104 host-type P815 leukemia cells (H-2d). All recipients of T cell-depleted BM died from leukemia by day +20 after BMT, while no leukemia death was observed in R-Spo1 treated allogeneic animals. Overall, R-Spo1 treatment improved outcome of allogeneic BMT by reducing GVHD, while maintaining immune reconstitution and GVL effects. Thus, administration of R-Spo1 reduces the GI tract damage and suppresses donor T cell activation and systemic GVHD, supporting a hypothesis that the GI tract plays a major role in the amplification of systemic GVHD. Brief treatment with R-Spo1 may serve as an effective adjunct to clinical regimens of GVHD prophylaxis. Pathology Scores Group Survivals on day+40 (%) Small bowel Large bowel Liver INF □ (ng/ml) TNF □ (pg/ml) TCD: T cell-depleted BMT, +T: T cell-repleted BMT, ND: not detected Data are expressed as mean ± SD. *P<0.01 vs control, **P<0.05 vs control TCD diluent 100 2.4± 0.9 3.5± 1.0 0.3± 0.3 ND ND +T diluent 12.5 8.3± 2.7 7.3± 1.9 2.0± 0.8 6.0 ± 2.4 103.7 ± 9.9 +T R-Spo1 62.5* 3.4±1.9** 3.9± 0.3** 0.8± 0.7** 2.3 ± 1.5** 55.4 ± 6.6**


Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 749-755 ◽  
Author(s):  
Yoshinobu Maeda ◽  
Pavan Reddy ◽  
Kathleen P. Lowler ◽  
Chen Liu ◽  
Dennis Keith Bishop ◽  
...  

Abstract γδ T cells localize to target tissues of graft-versus-host disease (GVHD) and therefore we investigated the role of host γδ T cells in the pathogenesis of acute GVHD in several well-characterized allogeneic bone marrow transplantation (BMT) models. Depletion of host γδ T cells in wild-type (wt) B6 recipients by administration of anti-T-cell receptor (TCR) γδ monoclonal antibody reduced GVHD, and γδ T-cell-deficient (γδ-/-) BM transplant recipients experienced markedly improved survival compared with normal controls (63% vs 10%, P &lt; .001). γδ T cells were responsible for this difference because reconstitution of γδ-/- recipients with γδ T cells restored GVHD mortality. γδ-/- recipients showed decreased serum levels of tumor necrosis factor α (TNF-α), less GVHD histopathologic damage, and reduced donor T-cell expansion. Mechanistic analysis of this phenomenon demonstrated that dendritic cells (DCs) from γδ-/- recipients exhibited less allostimulatory capacity compared to wt DCs after irradiation. Normal DCs derived from BM caused greater allogeneic T-cell proliferation when cocultured with γδ T cells than DCs cocultured with medium alone. This enhancement did not depend on interferon γ (IFN-γ), TNF-α, or CD40 ligand but did depend on cell-to-cell contact. These data demonstrated that the host γδ T cells exacerbate GVHD by enhancing the allostimulatory capacity of host antigen-presenting cells. (Blood. 2005;106:749-755)


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2877-2885 ◽  
Author(s):  
Pavan Reddy ◽  
Takanori Teshima ◽  
Gerhard Hildebrandt ◽  
Debra L. Williams ◽  
Chen Liu ◽  
...  

Interleukin-18 (IL-18) is a unique cytokine that modulates both TH1/TH2 responses, but its ability to modulate diseases through induction of TH2 cytokines is unclear. It has been shown to play an important role in allogeneic bone marrow transplantation (BMT). Because immune responses of allogeneic BM donors may affect acute graft-versus-host disease (GVHD), we investigated the effect of pretreating BM transplant donors with IL-18 on the severity of acute GVHD using a well-characterized experimental BMT model (BALB/c→B6). Pretreatment of allogeneic BM transplant donors with IL-18 significantly improved survival (80% vs 0%; P < .001), and reduced clinical, biochemical, and pathologic indices of acute GVHD in BM transplant recipients. IL-18 pretreatment was associated with reduced interferon γ (IFN-γ) and greater IL-4 secretion by donor T cells after BMT. Acute GVHD mortality was reduced when IL-18 was administered to donors deficient in IFN-γ and signal transducer and activator of transcription 4 (STAT4) but not STAT6 signaling molecules, suggesting a critical role for STAT6 signaling in IL-18's protective effect. IL-18 treatment did not alter donor CD8+ cytotoxic T-lymphocyte (CTL) activity and preserved graft-versus-leukemia (GVL) effects after allogeneic BMT (70% vs 10%; P < .01). Together these data illustrate that pretreatment of donors with IL-18 prior to allogeneic BMT attenuates acute GVHD in a STAT6-dependent mechanism while preserving GVL effects.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1316-1316
Author(s):  
William J. Murphy ◽  
Olga Frolova ◽  
Marina Konopleva ◽  
Michael Andreeff ◽  
Weihong Ma ◽  
...  

Abstract The use of hematopoietic stem cell transplantation (HSCT) in cancer treatment is seriously hampered by the occurrence of graft-versus-host disease (GVHD) and cancer relapse. During acute GVHD, inflammatory cytokines play a pivotal role in the amplification of GVHD. Therefore, assessment of agents with known anti-neoplastic activity that also reduce cytokine production may be useful in both the prevention of GVHD and cancer relapse. The synthetic triterpenoid, CDDO (2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid) is multifunctional molecule which has shown potent anti-cancer activities both in vitro and in vivo through the induction of apoptosis. We first examined the effects of CDDO on both human and murine T cell mitogen responses in vitro. CDDO significantly inhibited mitogen responsiveness of both human and murine T cells in vitro with evidence of cell cycle arrest of the human T cells. We then proceeded to examine the effects of CDDO on acute GVHD induction and progression. In these studies, lethally irradiated C57BL/6 mice received 10 million bone marrow cells (BMC) and 40 million spleen cells from fully MHC-mismatched BALB/c donors. All of the control mice succumbed rapidly due to acute GVHD. In contrast, the mice that received CDDO (120 ug/BID) given from days 0-3 following BMT exhibited significant improvement in survival (P &lt; 0.001). Body weights from the treated mice also were significantly increased compared to untreated controls. We found that the timing of CDDO administration was a critical factor for protection from GVHD as protection only occurred when CDDO was administered early after BMT. Importantly, donor myeloid reconstitution was not adversely affected by CDDO treatment as determined by peripheral blood cell count and donor chimerism assessment on day +14 post-transplant. No adverse toxicities or effects on reconstitution were observed in the mice receiving BMC alone with CDDO being administered continuously. Given the reported direct anti-tumor effects of CDDO, it will be of particular interest in examining the effects of CDDO and allogeneic BMT in tumor-bearing recipients. Our findings suggest that CDDO can enhance the efficacy of allogeneic BMT by decreasing acute GVHD in mice.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2426-2433 ◽  
Author(s):  
Larry D. Anderson ◽  
Cherylyn A. Savary ◽  
Craig A. Mullen

Allogeneic bone marrow transplantation (BMT) induces 2 closely associated immune responses: graft-versus-tumor (GVT) activity and graft-versus-host disease (GVHD). We have previously shown that pretransplant immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine increases both GVT activity and lethal GVHD because of the priming of donor T cells against putative minor histocompatibility antigens (mHAgs) on the tumor vaccine cells. The work reported here tested the hypothesis that tumor cell vaccination after BMT would produce an increase in GVT activity without exacerbating GVHD. C3H.SW donor bone marrow and splenocytes were transplanted into major histocompatibility complex-matched, mHAg-mismatched C57BL/6 recipients. One month after BMT, recipients were immunized against either a C57BL/6 myeloid leukemia (C1498) or fibrosarcoma (205). Immunized recipients had a significant increase in survival and protection against tumor growth in both tumor models, and significant tumor protection was seen even in recipients with preexisting micrometastatic cancer before immunization. Alloreactivity appeared to contribute to the in vitro anti-tumor cytolytic activity, but in vivo immunity was tumor specific, and no exacerbation of GVHD was observed. Although the immunodominant mHAg B6dom1 was shown to be expressed by all B6 tumors tested and was largely responsible for the alloreactivity resulting from tumor immunization of donors, the in vitro alloreactivity of immune recipients was more restricted and was not mediated by recognition of B6dom1. In conclusion, post-transplant tumor immunization of allogeneic BMT recipients against either a leukemia or a solid tumor can increase GVT activity and survival without exacerbating GVHD.


2005 ◽  
Vol 201 (10) ◽  
pp. 1647-1657 ◽  
Author(s):  
Riham El-Asady ◽  
Rongwen Yuan ◽  
Kechang Liu ◽  
Donghua Wang ◽  
Ronald E. Gress ◽  
...  

Destruction of the host intestinal epithelium by donor effector T cell populations is a hallmark of graft-versus-host disease (GVHD), but the underlying mechanisms remain obscure. We demonstrate that CD8+ T cells expressing CD103, an integrin conferring specificity for the epithelial ligand E-cadherin, play a critical role in this process. A TCR transgenic GVHD model was used to demonstrate that CD103 is selectively expressed by host-specific CD8+ T cell effector populations (CD8 effectors) that accumulate in the host intestinal epithelium during GVHD. Although host-specific CD8 effectors infiltrated a wide range of host compartments, only those infiltrating the intestinal epithelium expressed CD103. Host-specific CD8 effectors expressing a TGF-β dominant negative type II receptor were defective in CD103 expression on entry into the intestinal epithelium, which indicates local TGF-β activity as a critical regulating factor. Host-specific CD8 effectors deficient in CD103 expression successfully migrated into the host intestinal epithelium but were retained at this site much less efficiently than wild-type host-specific CD8 effectors. The relevance of these events to GVHD pathogenesis is supported by the finding that CD103-deficient CD8+ T cells were strikingly defective in transferring intestinal GVHD pathology and mortality. Collectively, these data document a pivotal role for TGF-β–dependent CD103 expression in dictating the gut tropism, and hence the destructive potential, of CD8+ T cells during GVHD pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document