scholarly journals microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells

2014 ◽  
Vol 211 (11) ◽  
pp. 2281-2295 ◽  
Author(s):  
Antoine Marcais ◽  
Rory Blevins ◽  
Johannes Graumann ◽  
Amelie Feytout ◽  
Gopuraja Dharmalingam ◽  
...  

T cell receptor (TCR) signals can elicit full activation with acquisition of effector functions or a state of anergy. Here, we ask whether microRNAs affect the interpretation of TCR signaling. We find that Dicer-deficient CD4 T cells fail to correctly discriminate between activating and anergy-inducing stimuli and produce IL-2 in the absence of co-stimulation. Excess IL-2 production by Dicer-deficient CD4 T cells was sufficient to override anergy induction in WT T cells and to restore inducible Foxp3 expression in Il2-deficient CD4 T cells. Phosphorylation of Akt on S473 and of S6 ribosomal protein was increased and sustained in Dicer-deficient CD4 T cells, indicating elevated mTOR activity. The mTOR components Mtor and Rictor were posttranscriptionally deregulated, and the microRNAs Let-7 and miR-16 targeted the Mtor and Rictor mRNAs. Remarkably, returning Mtor and Rictor to normal levels by deleting one allele of Mtor and one allele of Rictor was sufficient to reduce Akt S473 phosphorylation and to reduce co-stimulation–independent IL-2 production in Dicer-deficient CD4 T cells. These results show that microRNAs regulate the expression of mTOR components in T cells, and that this regulation is critical for the modulation of mTOR activity. Hence, microRNAs contribute to the discrimination between T cell activation and anergy.

Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Miwa Sasai ◽  
Ji Su Ma ◽  
Masaaki Okamoto ◽  
Kohei Nishino ◽  
Hikaru Nagaoka ◽  
...  

Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.


2019 ◽  
Vol 49 (6) ◽  
pp. 653-662
Author(s):  
Ryo Nakagawa ◽  
Ryosuke Muroyama ◽  
Chisato Saeki ◽  
Tsunekazu Oikawa ◽  
Yoshimi Kaise ◽  
...  

2017 ◽  
Vol 114 (30) ◽  
pp. E6117-E6126 ◽  
Author(s):  
Thomas C. J. Tan ◽  
John Knight ◽  
Thomas Sbarrato ◽  
Kate Dudek ◽  
Anne E. Willis ◽  
...  

Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.


2000 ◽  
Vol 191 (6) ◽  
pp. 985-994 ◽  
Author(s):  
Suling Li ◽  
Shangwu Chen ◽  
Xiufeng Xu ◽  
Anette Sundstedt ◽  
Kajsa M. Paulsson ◽  
...  

Members of the suppressor of cytokine signaling (SOCS) family were discovered as negative regulators of cytokine signaling by inhibition of the Janus kinase–signal transducer and activator of transcription (Jak-STAT) pathway. Among them, cytokine-induced Src homology 2 (SH2) protein (CIS) was found to inhibit the interleukin 3– and erythropietin-mediated STAT5 signaling pathway. However, involvement of SOCS proteins in other signaling pathways is still unknown. This study shows that the expression of CIS is selectively induced in T cells after T cell receptor (TCR) stimulation. In transgenic mice, with selective expression of CIS in CD4 T cells, elevated CIS strongly promotes TCR-mediated proliferation and cytokine production in vitro, and superantigen-induced T cell activation in vivo. Forced expression of CIS also prolongs survival of CD4 T cells after TCR activation. Molecular events immediately downstream from the TCR are not changed in CIS-expressing CD4 T cells, but activation of mitogen-activated protein (MAP) kinase pathways by TCR stimulation is significantly enhanced. Together with the increased MAP kinase activation, a direct interaction of CIS and protein kinase Cθ was also demonstrated. These results suggest that CIS is one of the important regulators of TCR-mediated T cell activation. The functions of CIS, enhancing TCR signaling and inhibiting cytokine signaling, may be important in the regulation of immune response and homeostasis.


2004 ◽  
Vol 199 (3) ◽  
pp. 369-379 ◽  
Author(s):  
Magdalena M. Gorska ◽  
Susan J. Stafford ◽  
Osman Cen ◽  
Sanjiv Sur ◽  
Rafeul Alam

The first step in T cell receptor for antigen (TCR) signaling is the activation of the receptor-bound Src kinases, Lck and Fyn. The exact mechanism of this process is unknown. Here, we report that the novel Src homology (SH) 3/SH2 ligand–Uncoordinated 119 (Unc119) associates with CD3 and CD4, and activates Lck and Fyn. Unc119 overexpression increases Lck/Fyn activity in T cells. In Unc119-deficient T cells, Lck/Fyn activity is dramatically reduced with concomitant decrease in interleukin 2 production and cellular proliferation. Reconstitution of cells with Unc119 reverses the signaling and functional outcome. Thus, Unc119 is a receptor-associated activator of Src-type kinases. It provides a novel mechanism of signal generation in the TCR complex.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Jun-ichiro Suzuki ◽  
Sho Yamasaki ◽  
Jennifer Wu ◽  
Gary A. Koretzky ◽  
Takashi Saito

Abstract The dynamic rearrangement of the actin cytoskeleton plays critical roles in T-cell receptor (TCR) signaling and immunological synapse (IS) formation in T cells. Following actin rearrangement in T cells upon TCR stimulation, we found a unique ring-shaped reorganization of actin called the “actin cloud,” which was specifically induced by outside-in signals through lymphocyte function–associated antigen-1 (LFA-1) engagement. In T-cell–antigen-presenting cell (APC) interactions, the actin cloud is generated in the absence of antigen and localized at the center of the T-cell–APC interface, where it accumulates LFA-1 and tyrosine-phosphorylated proteins. The LFA-1–induced actin cloud formation involves ADAP (adhesion- and degranulation-promoting adaptor protein) phosphorylation, LFA-1/ADAP assembly, and c-Jun N-terminal kinase (JNK) activation, and occurs independent of TCR and its proximal signaling. The formation of the actin cloud lowers the threshold for subsequent T-cell activation. Thus, the actin cloud induced by LFA-1 engagement may serve as a possible platform for LFA-1–mediated costimulatory function for T-cell activation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4026-4026
Author(s):  
Hetty J Bontkes ◽  
Jurjen M Ruben ◽  
Theresia M. Westers ◽  
Gert J. Ossenkoppele ◽  
Arjan A. Van de Loosdrecht

Abstract Abstract 4026 Aberrant DNA methylation and other epigenetic changes play a role in the development of myelodysplastic syndromes (MDS). Epigenetic drugs such as DNA methyltransferase inhibitors are therefore increasingly employed in MDS treatment regimens. Recent studies show that gene methylation processes also regulate T-cell function. Here we analyzed the in vitro effects of the DNA methyltransferase inhibitor ‘5-azacitidine (Aza) on CD4+ T-cell activation. We confirmed the previously described inhibition of proliferation and increased expression of FoxP3, the regulatory T-cell (Treg) marker, by anti-CD3 stimulated T-cells in the presence of 1mM Aza. Here we have sorted CD4+ T-cells isolated form healthy donor peripheral blood into CD25neg resting, CD25dim recently activated and CD25hi Treg cells. Aza facilitated the induction of CD25hiFoxP3+ T-cells from CD25neg (4.7% of vehicle treated cells versus 17.3% of Aza treated cells p=0.0007, n=9) and to a lesser extend from CD25dim (1.2% versus 8.6%, p=0.0015, n=7) CD4+ T-cells, while Aza had no effect on FoxP3 expression in CD25hi sorted cells, FoxP3 expression remained high. In addition, cytokine producing T-cells were enumerated after stimulation with phorbol-12-myristate-13-acetate (PMA) and ionomycin in the presence of Brefeldin A. Aza treatment increased the number of IFNγ producing cells in the total CD4+ population (19.1% versus 40.8%; p<0.0001, n=10) as well as among the CD25neg (5.7% vs 41.2%; p=0.001, n=8) and CD25dim CD4+ T-cell populations (28.4% versus 46.6%; p=0.06, n=7). TNFα producing cells were increased in the total CD4+ (36.4% versus 51.1%; p=0.011, n=9) and CD4posCD25dim (36.7% versus 52.3%; p=0.033, n=6) populations but not in the CD4posCD25neg cells (50.9% versus 51.1%; p=0.9, n=7). This increase in pro-inflammatory cytokine production indicates that Aza induces T-cell activation and that the increase in FoxP3 expression may reflect T-cell activation rather than an increase in bona fide Treg by Aza treatment. Indeed a proportion of the FoxP3+ cells was positive for TNFa or IFNg, suggesting that these are activated T-cells rather than Treg. However, the proportion of FoxP3+IFNγ- and FoxP3+TNFα- cells was significantly higher among Aza treated CD4+ cells (p=0.0037 and 0.0018 respectively, n=5), suggesting an increase in Treg as well. Functional assays to demonstrate that these FoxP3+ cells are indeed regulatory T-cells are currently being set up. Next to IFNγ and TNFα producing Th1 cells, the more recently described IL-17 committed Th17 cells have been described to play a role in low risk MDS. Furthermore, it has been shown that Treg can differentiate into IL-17 producing cells. We, therefore evaluated the effect of Aza on Th17 cells. Interestingly, in contrast to IFNγ and TNFα producing cells, the proportion of IL-17+IFNγ- Th17 cells among the total CD4+ population was reduced by Aza treatment (1.8% versus 1.1% p=0.035, n=10), leading to a significant increase in the Th1/Th17 ratio (14.0 versus 47.9, p=0.0005, n=10). In contrast, although the numbers were small, the proportion of Th17 cells was increased by Aza in the CD25neg population (0.08% versus 0.20%, p=0.028, n=8), suggesting that Aza may have differential effects on resting and recently activated T-cells. In conclusion, our data show that Aza increases the induction of FoxP3+ Treg and Th1 cells but inhibits IL-17 production, particularly by previously activated T-cells. Aza may therefore particularly be beneficial in pathogenic immune disorders characterized by increased Th17 numbers accompanied by reduced Treg frequencies, such as low-risk MDS. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 12 (567) ◽  
pp. eaav4373 ◽  
Author(s):  
Mei Suen Kong ◽  
Akiko Hashimoto-Tane ◽  
Yusuke Kawashima ◽  
Machie Sakuma ◽  
Tadashi Yokosuka ◽  
...  

T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell responses to TCR stimulation. Compared to activated wild-type (WT) T cells, those that lacked CIN85 produced more IL-2 and exhibited greater proliferation. After stimulation of WT T cells with their cognate antigen, CIN85 was recruited to the TCR signaling complex. Early TCR signaling events, such as phosphorylation of ζ-chain–associated protein kinase 70 (Zap70), Src homology 2 (SH2) domain–containing leukocyte protein of 76 kDa (SLP76), and extracellular signal–regulated kinase (Erk), were enhanced in CIN85-deficient T cells. The inhibitory function of CIN85 required the SH3 and PR regions of the adaptor, which associated with the phosphatase suppressor of TCR signaling–2 (Sts-2) after TCR stimulation. Together, our data suggest that CIN85 is recruited to the TCR signaling complex and mediates inhibition of T cell activation through its association with Sts-2.


2000 ◽  
Vol 192 (7) ◽  
pp. 1047-1058 ◽  
Author(s):  
Nancy J. Boerth ◽  
Jeffrey J. Sadler ◽  
Daniel E. Bauer ◽  
James L. Clements ◽  
Shereen M. Gheith ◽  
...  

Two hematopoietic-specific adapters, src homology 2 domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224–244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cγ1 phosphorylation, extracellular signal–regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224–244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane.


Sign in / Sign up

Export Citation Format

Share Document