scholarly journals The metabolism-modulating activity of IL-17 signaling in health and disease

2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Rami Bechara ◽  
Mandy J. McGeachy ◽  
Sarah L. Gaffen

IL-17 was discovered nearly 30 yr ago, but it has only been recently appreciated that a key function of this cytokine is to orchestrate cellular and organismal metabolism. Indeed, metabolic regulation is integrated into both the physiological and the pathogenic aspects of IL-17 responses. Thus, understanding the interplay between IL-17 and downstream metabolic processes could ultimately inform therapeutic opportunities for diseases involving IL-17, including some not traditionally linked to this cytokine pathway. Here, we discuss the emerging pathophysiological roles of IL-17 related to cellular and organismal metabolism, including metabolic regulation of IL-17 signal transduction.

2020 ◽  
Vol 52 (7) ◽  
pp. 768-775 ◽  
Author(s):  
Wenping Li ◽  
Yiyuan Li ◽  
Jin Jin

Abstract Interleukin-33 (IL-33) is produced by various types of cells under physical or pathological conditions. As a multifunctional partner in health and disease, current evidence reveals that IL-33 also participates in several metabolic processes. IL-33 has been proven to contribute to regulating the activity of ST2+ group 2 innate lymphoid cells and regulatory T cells in adipose, which leads to the shift of insulin sensitivity and glucose clearance in glucose metabolism, thermogenesis, and adipocyte beiging in adipose metabolism. In this review, we briefly summarize the biological characteristics of Il-33 and discuss its regulatory function in glucose and adipose metabolism. By clarifying the underlying mechanism of IL-33, we highlight the crosstalk between immune response and metabolic processes mediated by IL-33.


2014 ◽  
Vol 42 (6) ◽  
pp. 1484-1489 ◽  
Author(s):  
Pulak R. Nath ◽  
Noah Isakov

Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Ye Chen ◽  
Jacob Colello ◽  
Wael Jarjour ◽  
Song Zheng

Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune and inflammatory diseases. The activity and function of Tregs are in large part determined by various intracellular metabolic processes. Recent findings have focused on how intracellular metabolism can shape the development, trafficking, and function of Tregs. In this review, we summarize and discuss current research that reveals how distinct metabolic pathways modulate Tregs differentiation, phenotype stabilization, and function. These advances highlight numerous opportunities to alter Tregs frequency and function in physiopathologic conditions via metabolic manipulation and have important translational implications.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Lamar Thomas ◽  
Laura Cook

ABSTRACT Streptococcus agalactiae (group B Streptococcus [GBS]) is an important cause of invasive infection in newborns, maternal women, and older individuals with underlying chronic illnesses. GBS has many mechanisms to adapt and survive in its host, and these mechanisms are often controlled via two-component signal transduction systems. In GBS, more than 20 distinct two-component systems (TCSs) have been classified to date, consisting of canonical TCSs as well as orphan and atypical sensors and regulators. These signal transducing systems are necessary for metabolic regulation, resistance to antibiotics and antimicrobials, pathogenesis, and adhesion to the mucosal surfaces to colonize the host. This minireview discusses the structures of these TCSs in GBS as well as how selected systems regulate essential cellular processes such as survival and colonization. GBS contains almost double the number of TCSs compared to the closely related Streptococcus pyogenes and Streptococcus pneumoniae, and while research on GBS TCSs has been increasing in recent years, no comprehensive reviews of these TCSs exist, making this review especially relevant.


2020 ◽  
Vol 38 (1) ◽  
pp. 147-170 ◽  
Author(s):  
Justin L. McCarville ◽  
Grischa Y. Chen ◽  
Víctor D. Cuevas ◽  
Katia Troha ◽  
Janelle S. Ayres

Metabolism is one of the strongest drivers of interkingdom interactions—including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes—beneficial, pathogenic, and commensal—and an opportunity to discover new ways to treat microbial-driven diseases.


Sign in / Sign up

Export Citation Format

Share Document