scholarly journals Helminths make themselves at home

2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Elia D. Tait Wojno

Drurey et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211140) show that excretory/secretory products from the parasitic helminth Heligmosomoides polygyrus suppress the host-protective small intestinal epithelial response. These findings establish that helminths directly modulate the tissue in which they live, shining new light on the host–parasite interaction.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bjarne Vermeire ◽  
Liara M. Gonzalez ◽  
Robert J. J. Jansens ◽  
Eric Cox ◽  
Bert Devriendt

AbstractSmall intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 725
Author(s):  
David Becerro-Recio ◽  
Javier González-Miguel ◽  
Alberto Ucero ◽  
Javier Sotillo ◽  
Álvaro Martínez-Moreno ◽  
...  

Excretory/secretory products released by helminth parasites have been widely studied for their diagnostic utility, immunomodulatory properties, as well as for their use as vaccines. Due to their location at the host/parasite interface, the characterization of parasite secretions is important to unravel the molecular interactions governing the relationships between helminth parasites and their hosts. In this study, the excretory/secretory products from adult worms of the trematode Fasciola hepatica (FhES) were employed in a combination of two-dimensional electrophoresis, immunoblot and mass spectrometry, to analyze the immune response elicited in sheep during the course of an experimental infection. Ten different immunogenic proteins from FhES recognized by serum samples from infected sheep at 4, 8, and/or 12 weeks post-infection were identified. Among these, different isoforms of cathepsin L and B, peroxiredoxin, calmodulin, or glutathione S-transferase were recognized from the beginning to the end of the experimental infection, suggesting their potential role as immunomodulatory antigens. Furthermore, four FhES proteins (C2H2-type domain-containing protein, ferritin, superoxide dismutase, and globin-3) were identified for the first time as non-immunogenic proteins. These results may help to further understand host/parasite relationships in fasciolosis, and to identify potential diagnostic molecules and drug target candidates of F. hepatica.


2016 ◽  
Vol 49 (1) ◽  
pp. 102-114 ◽  
Author(s):  
Ti-Dong Shan ◽  
Hui Ouyang ◽  
Tao Yu ◽  
Jie-Yao Li ◽  
Can-Ze Huang ◽  
...  

1995 ◽  
Vol 308 (2) ◽  
pp. 665-671 ◽  
Author(s):  
T P Mayall ◽  
I Bjarnason ◽  
U Y Khoo ◽  
T J Peters ◽  
A J S Macpherson

Most mitochondrial genes are transcribed as a single large transcript from the heavy strand of mitochondrial DNA, and are subsequently processed into the proximal mitochondrial (mt) 12 S and 16 S rRNAs, and the more distal tRNAs and mRNAs. We have shown that in intestinal epithelial biopsies the steady-state levels of mt 12 S and 16 S rRNA are an order of magnitude greater than those of mt mRNAs. Fractionation of rat small intestinal epithelial cells on the basis of their maturity has shown that the greatest ratios of 12 S mt rRNA/cytochrome b mt mRNA or 12 S mt rRNA/cytochrome oxidase I mt mRNA are found in the surface mature enterocytes, with a progressive decrease towards the crypt immature enteroblasts. Cytochrome b and cytochrome oxidase I mt mRNA levels are relatively uniform along the crypt-villus axis, but fractionation experiments showed increased levels in the crypt base. The levels of human mitochondrial transcription factor A are also greater in immature crypt enteroblasts compared with mature villus enterocytes. These results show that the relative levels of mt rRNA and mRNA are distinctly regulated in intestinal epithelial cells according to the crypt-villus position and differentiation status of the cells, and that there are higher mt mRNA and mt TFA levels in the crypts, consistent with increased transcriptional activity during mitochondrial biogenesis in the immature enteroblasts.


Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 61 ◽  
Author(s):  
Pavel Roudnický ◽  
Jiří Vorel ◽  
Jana Ilgová ◽  
Michal Benovics ◽  
Adam Norek ◽  
...  

Background: Serpins are a superfamily of serine peptidase inhibitors that participate in the regulation of many physiological and cell peptidase-mediated processes in all organisms (e.g. in blood clotting, complement activation, fibrinolysis, inflammation, and programmed cell death). It was postulated that in the blood-feeding members of the monogenean family Diplozoidae, serpins could play an important role in the prevention of thrombus formation, activation of complement, inflammation in the host, and/or in the endogenous regulation of protein degradation. Results: In silico analysis showed that the DNA and primary protein structures of serpin from Eudiplozoon nipponicum (EnSerp1) are similar to other members of the serpin superfamily. The inhibitory potential of EnSerp1 on four physiologically-relevant serine peptidases (trypsin, factor Xa, kallikrein, and plasmin) was demonstrated and its presence in the worm’s excretory-secretory products (ESPs) was confirmed. Conclusion: EnSerp1 influences the activity of peptidases that play a role in blood coagulation, fibrinolysis, and complement activation. This inhibitory potential, together with the serpin’s presence in ESPs, suggests that it is likely involved in host-parasite interactions and could be one of the molecules involved in the control of feeding and prevention of inflammatory responses.


2009 ◽  
Vol 206 (13) ◽  
pp. 2947-2957 ◽  
Author(s):  
De'Broski R. Herbert ◽  
Jun-Qi Yang ◽  
Simon P. Hogan ◽  
Kathryn Groschwitz ◽  
Marat Khodoun ◽  
...  

Th2 cells drive protective immunity against most parasitic helminths, but few mechanisms have been demonstrated that facilitate pathogen clearance. We show that IL-4 and IL-13 protect against intestinal lumen-dwelling worms primarily by inducing intestinal epithelial cells (IECs) to differentiate into goblet cells that secrete resistin-like molecule (RELM) β. RELM-β is essential for normal spontaneous expulsion and IL-4–induced expulsion of Nippostrongylus brasiliensis and Heligmosomoides polygyrus, which both live in the intestinal lumen, but it does not contribute to immunity against Trichinella spiralis, which lives within IEC. RELM-β is nontoxic for H. polygyrus in vitro but directly inhibits the ability of worms to feed on host tissues during infection. This decreases H. polygyrus adenosine triphosphate content and fecundity. Importantly, RELM-β–driven immunity does not require T or B cells, alternative macrophage activation, or increased gut permeability. Thus, we demonstrate a novel mechanism for host protection at the mucosal interface that explains how stimulation of epithelial cells by IL-4 and IL-13 contributes to protection against parasitic helminthes that dwell in the intestinal lumen.


Sign in / Sign up

Export Citation Format

Share Document