scholarly journals Block of the cyclic GMP-gated channel of vertebrate rod and cone photoreceptors by l-cis-diltiazem.

1992 ◽  
Vol 100 (5) ◽  
pp. 783-801 ◽  
Author(s):  
L W Haynes

Inside-out patches were excised from catfish rod or cone outer segments. Single channel and macroscopic currents were recorded from GMP-gated channels activated by 1 mM cGMP in low divalent buffered saline. Currents were blocked by the application of micromolar concentrations of l-cis-diltiazem to the cytoplasmic side of the patch. The concentration dependence of block indicated that a single molecule was sufficient to block a channel and that all channels were susceptible to block. The dissociation constant for the rod channel was an order of magnitude smaller than for the cone channel, but the voltage dependence of block was nearly identical. The macroscopic current-voltage relation in the presence of blocker was inwardly rectifying and superficially resembled voltage-dependent block by an impermeant blocker occluding the ion-conducting pore of the channel. Block by diltiazem acting from the extracellular side of the channel was investigated by including 5 microM diltiazem in the recording pipette solution. The macroscopic current-voltage relation again showed inward rectification, inconsistent with the idea that diltiazem acts by occluding the pore at the external side. The kinetics of block by diltiazem applied to the intra- and extracellular side were measured in cone patches containing only a single channel. The unbinding rates were similar in both cases, suggesting a single binding site. Differences in the binding rate were consistent with greater accessibility to the binding site from the cytoplasmic side. Block from the cytoplasmic side was independent of pH, suggesting that the state of ionization of diltiazem was not related to its ability to block the channel in a voltage-dependent fashion. These observations are inconsistent with a pore-occluding blocker, but could be explained if the hydrophobic portion of diltiazem partitioned into the hydrophobic core of the channel protein, perhaps altering the gating of the channel.

1999 ◽  
Vol 277 (1) ◽  
pp. H199-H210 ◽  
Author(s):  
Johann Kiehn ◽  
Antonio E. Lacerda ◽  
Arthur M. Brown

The rapid, repolarizing K+ current in cardiomyocytes ( I Kr) has unique inwardly rectifying properties that contribute importantly to the downstroke of the cardiac action potential. The human ether-à-go-go-related gene ( HERG) expresses a macroscopic current virtually identical to I Kr, but a description of the single-channel properties that cause rectification is lacking. For this reason we measured single-channel and macropatch currents heterologously expressed by HERG in Xenopus oocytes. Our experiments had two main findings. First, the single-channel current-voltage relation showed inward rectification, and conductance was 9.7 pS at −100 mV and 3.9 pS at 100 mV when measured in symmetrical 100 mM K+ solutions. Second, single channels frequently showed no openings during depolarization but nevertheless revealed bursts of openings during repolarization. This type of gating may explain the inward rectification of HERG currents. To test this hypothesis, we used a three-closed state kinetics model and obtained rate constants from fits to macropatch data. Results from the model are consistent with rapid inactivation from closed states as a significant source of HERG rectification.


2011 ◽  
Vol 139 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Clio Rubinos ◽  
Helmuth A. Sánchez ◽  
Vytas K. Verselis ◽  
Miduturu Srinivas

The anti-malarial drug quinine and its quaternary derivative N-benzylquininium (BQ+) have been shown to inhibit gap junction (GJ) channels with specificity for Cx50 over its closely related homologue Cx46. Here, we examined the mechanism of BQ+ action using undocked Cx46 and Cx50 hemichannels, which are more amenable to analyses at the single-channel level. We found that BQ+ (300 µM–1 mM) robustly inhibited Cx50, but not Cx46, hemichannel currents, indicating that the Cx selectivity of BQ+ is preserved in both hemichannel and GJ channel configurations. BQ+ reduced Cx50 hemichannel open probability (Po) without appreciably altering unitary conductance of the fully open state and was effective when added from either extracellular or cytoplasmic sides. The reductions in Po were dependent on BQ+ concentration with a Hill coefficient of 1.8, suggesting binding of at least two BQ+ molecules. Inhibition by BQ+ was voltage dependent, promoted by hyperpolarization from the extracellular side and conversely by depolarization from the cytoplasmic side. These results are consistent with binding of BQ+ in the pore. Substitution of the N-terminal (NT) domain of Cx46 into Cx50 significantly impaired inhibition by BQ+. The NT domain contributes to the formation of the wide cytoplasmic vestibule of the pore and, thus, may contribute to the binding of BQ+. Single-channel analyses showed that BQ+ induced transitions that did not resemble pore block, but rather transitions indistinguishable from the intrinsic gating events ascribed to loop gating, one of two mechanisms that gate Cx channels. Moreover, BQ+ decreased mean open time and increased mean closed time, indicating that inhibition consists of an increase in hemichannel closing rate as well as a stabilization of the closed state. Collectively, these data suggest a mechanism of action for BQ+ that involves modulation loop gating rather than channel block as a result of binding in the NT domain.


1992 ◽  
Vol 262 (5) ◽  
pp. C1154-C1160 ◽  
Author(s):  
W. H. Cliff ◽  
R. A. Schoumacher ◽  
R. A. Frizzell

Retrovirus-mediated transfection of cDNA for the cystic fibrosis (CF) gene into the CF pancreatic cell line, CFPAC-1, confers adenosine 3',5'-cyclic monophosphate (cAMP)-dependent regulation of Cl conductance. We used patch-clamp techniques to identify the single-channel basis of this conductance pathway and to study its properties. Forskolin or cAMP activated Cl channels with a conductance of 9 +/- 1 pS in 26 of 62 cell-attached patches of cystic fibrosis transmembrane conductance regulator (CFTR)-transfected CFPAC-1 cells. The current-voltage (I-V) relation showed slight outward rectification (chord conductance of 10 +/- 2 pS at +80 mV vs. 7 +/- 1 pS at -80mV) with high Cl concentrations (170 mM) in the pipette solution. Channel kinetics were voltage sensitive, with longer openings at positive clamp voltages. Channel properties were unaffected by the substitution of N-methyl-D-glucamine for pipette Na or by the addition of disulfonic stilbenes (100 microM DNDS or DIDS) to the pipette. The channels usually inactivated within seconds of patch excision, but in three of nine patches, activity could be maintained by addition of the catalytic subunit of protein kinase A and ATP. With equal Cl concentrations on both membrane surfaces, the single-channel I-V relation was linear, suggesting that the outward rectification of the cell-attached channel is due to a pipette-to-cell Cl gradient. Anion substitution on the extracellular side of the membrane indicates a halide permselectivity of Br approximately Cl greater than I.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Author(s):  
Di Wu

Ion-channel functions are often studied by the current-voltage relation, which is commonly fitted by the Boltzmann equation, a powerful model widely used nowadays. However, the Boltzmann model is restricted to a two-state ion-permeation process. Here we present an improved model that comprises a flexible number of states and incorporates both the single-channel conductance and the open-channel probability. Employing the channel properties derived from the single-channel recording experiments, the proposed model is able to describe various current-voltage relations, especially the reversal ion-permeation curves showing the inward- and outward-rectifications. We demonstrate the applicability of the proposed model using the published patch-clamp data of BK and MthK potassium channels, and discuss the similarity of the two channels based on the model studies.


2002 ◽  
Vol 120 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Lai-Hua Xie ◽  
Scott A. John ◽  
James N. Weiss

Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg2+. Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopus oocytes expressing Kir2.1, and single channel currents in the inside-out patches from COS7 cells transfected with Kir2.1. We found that as spermine concentration or voltage increased, the shallow voltage-dependent component of spermine block at more negative voltages was caused by progressive reduction in the single channel current amplitude, without a decrease in open probability. We attributed this effect to spermine screening negative surface charges involving E224 and E299 near the inner vestibule of the channel, thereby reducing K ion permeation rate. This idea was further supported by experiments in which increasing ionic strength also decreased Kir2.1 single channel amplitude, and by mutagenesis experiments showing that this component of spermine block decreased when E224 and E299, but not D172, were neutralized. The steep voltage-dependent component of block at more depolarized voltages was attributed to spermine migrating deeper into the pore and causing fast open channel block. A quantitative model incorporating both features showed excellent agreement with the steady-state and kinetic data. In addition, this model accounts for previously described substate behavior induced by a variety of Kir2.1 channel blockers.


2009 ◽  
Vol 133 (5) ◽  
pp. 525-546 ◽  
Author(s):  
Nathaniel T. Blair ◽  
J. Stefan Kaczmarek ◽  
David E. Clapham

TRPC5 is a calcium (Ca2+)-permeable nonselective cation channel expressed in several brain regions, including the hippocampus, cerebellum, and amygdala. Although TRPC5 is activated by receptors coupled to phospholipase C, the precise signaling pathway and modulatory signals remain poorly defined. We find that during continuous agonist activation, heterologously expressed TRPC5 currents are potentiated in a voltage-dependent manner (∼5-fold at positive potentials and ∼25-fold at negative potentials). The reversal potential, doubly rectifying current–voltage relation, and permeability to large cations such as N-methyl-d-glucamine remain unchanged during this potentiation. The TRPC5 current potentiation depends on extracellular Ca2+: replacement by Ba2+ or Mg2+ abolishes it, whereas the addition of 10 mM Ca2+ accelerates it. The site of action for Ca2+ is intracellular, as simultaneous fura-2 imaging and patch clamp recordings indicate that potentiation is triggered at ∼1 µM [Ca2+]. This potentiation is prevented when intracellular Ca2+ is tightly buffered, but it is promoted when recording with internal solutions containing elevated [Ca2+]. In cell-attached and excised inside-out single-channel recordings, increases in internal [Ca2+] led to an ∼10–20-fold increase in channel open probability, whereas single-channel conductance was unchanged. Ca2+-dependent potentiation should result in TRPC5 channel activation preferentially during periods of repetitive firing or coincident neurotransmitter receptor activation.


2008 ◽  
Vol 295 (2) ◽  
pp. C557-C565 ◽  
Author(s):  
Sriharsha Vemana ◽  
Shilpi Pandey ◽  
H. Peter Larsson

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization that creates time-dependent, inward rectifying currents, gated by the movement of the intrinsic voltage sensor S4. However, inward rectification of the HCN currents is not only observed in the time-dependent HCN currents, but also in the instantaneous HCN tail currents. Inward rectification can also be seen in mutant HCN channels that have mainly time-independent currents ( 5 ). In the present study, we show that intracellular Mg2+ functions as a voltage-dependent blocker of HCN channels, acting to reduce the outward currents. The affinity of HCN channels for Mg2+ is in the physiological range, with Mg2+ binding with an IC50 of 0.53 mM in HCN2 channels and 0.82 mM in HCN1 channels at +50 mV. The effective electrical distance for the Mg2+ binding site was found to be 0.19 for HCN1 channels, suggesting that the binding site is in the pore. Removing a cysteine in the selectivity filter of HCN1 channels reduced the affinity for Mg2+, suggesting that this residue forms part of the binding site deep within the pore. Our results suggest that Mg2+ acts as a voltage-dependent pore blocker and, therefore, reduces outward currents through HCN channels. The pore-blocking action of Mg2+ may play an important physiological role, especially for the slowly gating HCN2 and HCN4 channels. Mg2+ could potentially block outward hyperpolarizing HCN currents at the plateau of action potentials, thus preventing a premature termination of the action potential.


1999 ◽  
Vol 114 (5) ◽  
pp. 653-672 ◽  
Author(s):  
Enrico Nasi ◽  
Maria del Pilar Gomez

The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca2+ and Mg2+ that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being significantly higher for Ca2+ than Mg2+ (K1/2 ≈ 16 and 61 mM, respectively, at Vm = −30 mV). Neither cation is measurably permeant. Manipulating the concentration of permeant K ions affects the blockade, suggesting that the mechanism entails occlusion of the permeation pathway. The voltage dependency of Ca2+ block is consistent with a single binding site located at an electrical distance of δ ≈ 0.6 from the outside. Resolution of light-dependent single-channel currents under physiological conditions indicates that blockade must be slow, which prompted the use of perturbation/relaxation methods to analyze its kinetics. Voltage steps during illumination produce a distinct relaxation in the photocurrent (τ = 5–20 ms) that disappears on removal of Ca2+ and Mg2+ and thus reflects enhancement or relief of blockade, depending on the polarity of the stimulus. The equilibration kinetics are significantly faster with Ca2+ than with Mg2+, suggesting that the process is dominated by the “on” rate, perhaps because of a step requiring dehydration of the blocking ion to access the binding site. Complementary strategies were adopted to investigate the interaction between blockade and channel gating: the photocurrent decay accelerates with hyperpolarization, but the effect requires extracellular divalents. Moreover, conditioning voltage steps terminated immediately before light stimulation failed to affect the photocurrent. These observations suggest that equilibration of block at different voltages requires an open pore. Inducing channels to close during a conditioning hyperpolarization resulted in a slight delay in the rising phase of a subsequent light response; this effect can be interpreted as closure of the channel with a divalent ion trapped inside.


1990 ◽  
Vol 259 (5) ◽  
pp. H1609-H1612 ◽  
Author(s):  
A. I. Undrovinas ◽  
N. Burnashev ◽  
D. Eroshenko ◽  
I. Fleidervish ◽  
C. F. Starmer ◽  
...  

The ATP-sensitive potassium channel current (IK-ATP) was studied in excised inside-out patches from rat ventricular cells at 20-23 degrees C. The bath solution contained 140 mM KF, and the pipette solution contained 140 mM KCl and 1.2 mM MgCl2. ATP (0.5 mM) in the bath inhibited IK-ATP. In the absence of ATP, 10 microM quinidine decreased open probability 67 +/- 1% (n = 6) at -50 mV and 28 +/- 12% at -130 mV (n = 5) without affecting single channel conductance (48-52 pS). The block increased with 25 and 50 microM quinidine and could be reversed on washing quinidine for several minutes. Interburst (closed) intervals were increased by quinidine, whereas open and closed time distributions within bursts were not changed. We conclude that quinidine blocks IK-ATP in a "slow" and voltage-dependent manner in clinically relevant concentrations. Because of the postulated role for IK-ATP in cardiac ischemia, quinidine block of this channel may play a role in ischemic arrhythmias.


Sign in / Sign up

Export Citation Format

Share Document