scholarly journals Spermine Block of the Strong Inward Rectifier Potassium Channel Kir2.1

2002 ◽  
Vol 120 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Lai-Hua Xie ◽  
Scott A. John ◽  
James N. Weiss

Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg2+. Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopus oocytes expressing Kir2.1, and single channel currents in the inside-out patches from COS7 cells transfected with Kir2.1. We found that as spermine concentration or voltage increased, the shallow voltage-dependent component of spermine block at more negative voltages was caused by progressive reduction in the single channel current amplitude, without a decrease in open probability. We attributed this effect to spermine screening negative surface charges involving E224 and E299 near the inner vestibule of the channel, thereby reducing K ion permeation rate. This idea was further supported by experiments in which increasing ionic strength also decreased Kir2.1 single channel amplitude, and by mutagenesis experiments showing that this component of spermine block decreased when E224 and E299, but not D172, were neutralized. The steep voltage-dependent component of block at more depolarized voltages was attributed to spermine migrating deeper into the pore and causing fast open channel block. A quantitative model incorporating both features showed excellent agreement with the steady-state and kinetic data. In addition, this model accounts for previously described substate behavior induced by a variety of Kir2.1 channel blockers.

1990 ◽  
Vol 259 (5) ◽  
pp. H1609-H1612 ◽  
Author(s):  
A. I. Undrovinas ◽  
N. Burnashev ◽  
D. Eroshenko ◽  
I. Fleidervish ◽  
C. F. Starmer ◽  
...  

The ATP-sensitive potassium channel current (IK-ATP) was studied in excised inside-out patches from rat ventricular cells at 20-23 degrees C. The bath solution contained 140 mM KF, and the pipette solution contained 140 mM KCl and 1.2 mM MgCl2. ATP (0.5 mM) in the bath inhibited IK-ATP. In the absence of ATP, 10 microM quinidine decreased open probability 67 +/- 1% (n = 6) at -50 mV and 28 +/- 12% at -130 mV (n = 5) without affecting single channel conductance (48-52 pS). The block increased with 25 and 50 microM quinidine and could be reversed on washing quinidine for several minutes. Interburst (closed) intervals were increased by quinidine, whereas open and closed time distributions within bursts were not changed. We conclude that quinidine blocks IK-ATP in a "slow" and voltage-dependent manner in clinically relevant concentrations. Because of the postulated role for IK-ATP in cardiac ischemia, quinidine block of this channel may play a role in ischemic arrhythmias.


1996 ◽  
Vol 271 (5) ◽  
pp. C1705-C1715 ◽  
Author(s):  
D. P. Lotshaw ◽  
F. Li

A Ca(2+)-permeant, nonselective cation channel was observed in cell-attached and inside-out membrane patches from rat adrenal glomerulosa cells maintained in primary cell culture. In cell-attached patches under near physiological ionic conditions, single-channel currents exhibited a reversal potential near -10 mV, inward rectification, a nearly linear slope conductance between 0 and -80 mV of 17.4 pS, and voltage-dependent block at potentials more negative than -80 mV. Channels exhibiting identical conductance and gating properties were observed in inside-out patches; however, channel gating ran down within minutes in this configuation. In the inside-out configuration, channel gating did not require cytosolic Ca2+ (Ca2+ < 10(-9) M), and inward rectification was relieved by removal of intracellular Mg2+. Relative ionic permeability was calculated using reversal potential measurements from inside-out patches under bi-ionic conditions. The channel discriminated poorly among monovalent cations (PLi > PK > PCs > PNa) and was not significantly permeable to anions. The channel was permeable to Ca2+, exhibiting a relative permeability ratio of 0.29 PCa/PNa) when measured with 110 mM Ca2+ on the intracellular face and a permeability ratio of 4.38 (PCa/PNa) with 110 mM Ca2+ on the extracellular face. Channel gating behavior was episodic with open times ranging from milliseconds to tens of seconds and closed times lasting up to several minutes or longer. Channel gating appeared to be relatively voltage independent except that mean channel open time and open probability were reduced by membrane hyperpolarization. In cell-attached patches, bath application of 1 nM angiotensin II (ANG II) increased the channel open probability, primarily affecting channels exhibiting a low open probability, primarily affecting channels exhibiting a low open probability before stimulation. With the use of nystatin perforated-patch current clamp to measure membrane potential, ANG II was observed to induce large transient membrane depolarizations, consistent with activation of an inward current. We hypothesize that this channel is an important component of ANG II-induced membrane depolarization and Ca2+ influx during stimulation of aldosterone secretion.


2000 ◽  
Vol 279 (2) ◽  
pp. G277-G287 ◽  
Author(s):  
Olivier Mignen ◽  
Stéphane Egee ◽  
Martine Liberge ◽  
Brian J. Harvey

Single channel patch-clamp techniques were used to demonstrate the presence of outwardly rectifying chloride channels in the basolateral membrane of crypt cells from mouse distal colon. These channels were rarely observed in the cell-attached mode and, in the inside-out configuration, only became active after a delay and depolarizing voltage steps. Single channel conductance was 23.4 pS between −100 and −40 mV and increased to 90.2 pS between 40 and 100 mV. The channel permeability sequence for anions was: I− > SCN− > Br−> Cl− > NO3 − > F−≫ SO4 2− ≈ gluconate. In inside-out patches, the channel open probability was voltage dependent but insensitive to intracellular Ca2+ concentration. In cell-attached mode, forskolin, histamine, carbachol, A-23187, and activators of protein kinase C all failed to activate the channel, and activity could not be evoked in inside-out patches by exposure to the purified catalytic subunit of cAMP-dependent protein kinase A. The channel was inhibited by 5-nitro-2-(3-phenylpropylamino)benzoate, 9-anthracenecarboxylic acid, and DIDS. Stimulation of G proteins with guanosine 5′- O-(3-thiotriphosphate) decreased the channel open probability and conductance, whereas subsequent addition of guanosine 5′- O-(2-thiodiphosphate) reactivated the channel.


2005 ◽  
Vol 288 (1) ◽  
pp. F162-F169 ◽  
Author(s):  
Michael J. Morton ◽  
Sarah Chipperfield ◽  
Abdulrahman Abohamed ◽  
Asipu Sivaprasadarao ◽  
Malcolm Hunter

TASK-2 is a member of the two-pore domain K+ (K2P) channel family that is expressed at high levels in several epithelia, including the proximal tubule. In common with the other TASK channels, TASK-2 is sensitive to changes in extracellular pH. We have expressed human TASK-2 in Chinese hamster ovary cells and studied whole cell and single-channel activity by patch clamp. The open probability of K2P channels is generally independent of voltage, yielding linear current-voltage ( I- V) curves. Despite these properties, we found that these channels showed distinct inward rectification immediately on the establishment of whole cell clamp, which became progressively less pronounced with time. This rectification was due to intracellular Na+ but was unaffected by polyamines or Mg2+ (agents that cause rectification in Kir channels). Rectification was concentration- and voltage-dependent and could be reversibly induced by switching between Na+-rich and Na+-free bath solutions. In excised inside-out patches, Na+ reduced the amplitude of single-channel currents, indicative of rapid block and unblock of the pore. Mutations in the selectivity filter abolished Na+-induced rectification, suggesting that Na+ binds within the selectivity filter in wild-type channels. This sensitivity to intracellular Na+ may be an additional potential regulatory mechanism of TASK-2 channels.


2021 ◽  
Author(s):  
Linus J Conrad ◽  
Peter Proks ◽  
Stephen J Tucker

In addition to the classical voltage-dependent behavior mediated by voltage-sensing-domains (VSD), a growing number of voltage-dependent gating behaviors are being described in ion channels that lack canonical VSDs. A common thread in their mechanism of action is the contribution of the permeating ion to this voltage sensing process. The polymodal K2P K+ channel TREK2 responds to membrane voltage through a gating process that is mediated by the interaction of K+ with its selectivity filter. Recently, we have found that this action can be modulated by small molecule agonists (e.g. BL1249) which appear to have an electrostatic influence on K+ binding within the inner cavity and produce an increase in the single-channel conductance of TREK-2 channels. Here, we directly probed this K+-dependent gating process by recording both macroscopic and single-channel currents of TREK-2 in the presence of high concentrations of internal K+. Surprisingly we found that the channel is inhibited by high internal K+ concentrations and that this is mediated by the concomitant increase in ionic-strength. However, we were still able to determine that the increase in single channel conductance in the presence of BL1249 was blunted in high ionic-strength, whilst its activatory effect (on channel open probability) persisted. These effects are consistent with an electrostatic mechanism of action of negatively charged activators such as BL1249 on permeation, but also suggest that their influence on channel gating is more complex.


2020 ◽  
Vol 21 (2) ◽  
pp. 389 ◽  
Author(s):  
Paula Rivas-Ramírez ◽  
Antonio Reboreda ◽  
Lola Rueda-Ruzafa ◽  
Salvador Herrera-Pérez ◽  
J. Antonio Lamas

Bradykinin (BK), a hormone inducing pain and inflammation, is known to inhibit potassium M-currents (IM) and to increase the excitability of the superior cervical ganglion (SCG) neurons by activating the Ca2+-calmodulin pathway. M-current is also reduced by muscarinic agonists through the depletion of membrane phosphatidylinositol 4,5-biphosphate (PIP2). Similarly, the activation of muscarinic receptors inhibits the current through two-pore domain potassium channels (K2P) of the “Tandem of pore-domains in a Weakly Inward rectifying K+ channel (TWIK)-related channels” (TREK) subfamily by reducing PIP2 in mouse SCG neurons (mSCG). The aim of this work was to test and characterize the modulation of TREK channels by bradykinin. We used the perforated-patch technique to investigate riluzole (RIL) activated currents in voltage- and current-clamp experiments. RIL is a drug used in the palliative treatment of amyotrophic lateral sclerosis and, in addition to blocking voltage-dependent sodium channels, it also selectively activates the K2P channels of the TREK subfamily. A cell-attached patch-clamp was also used to investigate TREK-2 single channel currents. We report here that BK reduces spike frequency adaptation (SFA), inhibits the riluzole-activated current (IRIL), which flows mainly through TREK-2 channels, by about 45%, and reduces the open probability of identified single TREK-2 channels in cultured mSCG cells. The effect of BK on IRIL was precluded by the bradykinin receptor (B2R) antagonist HOE-140 (d-Arg-[Hyp3, Thi5, d-Tic7, Oic8]BK) but also by diC8PIP2 which prevents PIP2 depletion when phospholipase C (PLC) is activated. On the contrary, antagonizing inositol triphosphate receptors (IP3R) using 2-aminoethoxydiphenylborane (2-APB) or inhibiting protein kinase C (PKC) with bisindolylmaleimide did not affect the inhibition of IRIL by BK. In conclusion, bradykinin inhibits TREK-2 channels through the activation of B2Rs resulting in PIP2 depletion, much like we have demonstrated for muscarinic agonists. This mechanism implies that TREK channels must be relevant for the capture of information about pain and visceral inflammation.


1994 ◽  
Vol 266 (6) ◽  
pp. C1538-C1543 ◽  
Author(s):  
V. L. Nouailhetas ◽  
J. Aboulafia ◽  
E. Frediani-Neto ◽  
A. T. Ferreira ◽  
A. C. Paiva

Single-channel currents were recorded in excised inside-out and cell-attached patches of cultured cells from the longitudinal smooth muscle of the guinea pig ileum. In the presence of symmetrical high-K+ solutions, we identified a voltage-dependent 12-pS channel. It was reversibly blocked by addition of either Ba2+ or Cs+ at the cellular side of the patch but was insensitive to Ca2+ or ATP. This channel had poor selectivity concerning cations (PLi > PK = PNa = PCa, where P is permeability) and low permeability to anions. Isosmotic substitution of NaCl for KCl in the solution facing the cellular side enhanced the channel activity by increasing NPo values where N is number of channels and Po is open probability. In the cell-attached configuration, the channel was also activated by addition of angiotensin II in the bath solution. We propose that this nonselective cation channel might play a role in the control of the membrane potential during the contractile response of the guinea pig ileum to agonists by keeping the voltage-sensitive Ca2+ channels open.


2019 ◽  
Vol 116 (16) ◽  
pp. 7879-7888 ◽  
Author(s):  
Maartje Westhoff ◽  
Jodene Eldstrom ◽  
Christopher I. Murray ◽  
Emely Thompson ◽  
David Fedida

The IKs current has an established role in cardiac action potential repolarization, and provides a repolarization reserve at times of stress. The underlying channels are formed from tetramers of KCNQ1 along with one to four KCNE1 accessory subunits, but how these components together gate the IKs complex to open the pore is controversial. Currently, either a concerted movement involving all four subunits of the tetramer or allosteric regulation of open probability through voltage-dependent subunit activation is thought to precede opening. Here, by using the E160R mutation in KCNQ1 or the F57W mutation in KCNE1 to prevent or impede, respectively, voltage sensors from moving into activated conformations, we demonstrate that a concerted transition of all four subunits after voltage sensor activation is not required for the opening of IKs channels. Tracking voltage sensor movement, via [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) modification and fluorescence recordings, shows that E160R-containing voltage sensors do not translocate upon depolarization. E160R, when expressed in all four KCNQ1 subunits, is nonconducting, but if one, two, or three voltage sensors contain the E160R mutation, whole-cell and single-channel currents are still observed in both the presence and absence of KCNE1, and average conductance is reduced proportional to the number of E160R voltage sensors. The data suggest that KCNQ1 + KCNE1 channels gate like KCNQ1 alone. A model of independent voltage sensors directly coupled to open states can simulate experimental changes in IKs current kinetics, including the nonlinear depolarization of the conductance–voltage (G–V) relationship, and tail current acceleration as the number of nonactivatable E160R subunits is increased.


2003 ◽  
Vol 122 (5) ◽  
pp. 605-620 ◽  
Author(s):  
Zhiwei Cai ◽  
Toby S. Scott-Ward ◽  
David N. Sheppard

When excised inside-out membrane patches are bathed in symmetrical Cl−-rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl− currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl− channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl− current at +100 mV was 74 ± 2% (n = 10) of that at −100 mV. This rectification of macroscopic CFTR Cl− current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 ± 2% (n = 10) of that at −100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl− channel and not the result of pore block.


Ion channels in both the tonoplast and the plasma membrane of Saccharomyces cerevisiae have been characterized at the single channel level by patch-clamp techniques. The predominant tonoplast channel is cation selective, has an open-channel conductance of 120 pS in 100 mM KCl, and conducts Na + or K + equally well, and Ca 2+ to a lesser extent. Its open probability (P„) is voltage-dependent, peaking at about — 80 mV (cytoplasm negative), and falling to near zero at + 8 0 mV. Elevated cytoplasmic Ca 2+ , alkaline cytoplasmic pH, and reducing agents activate the channel. The predominant plasma membrane channel is highly selective for K + over anions and other cations, and shows strong outward rectification of the time-averaged current-voltage curves in cell-attached experiments. In isolated inside-out patches with micromolar cytoplasmic Ca 2+ , this channel is activated by positive going membrane voltages: mean P o is zero at negative membrane voltages and near unity at 100 mV. At moderate positive membrane voltages (20-40 mV), elevating cytoplasmic Ca 2+ activates the channel to open in bursts of several hundred milliseconds duration. At higher positive membrane voltages, however, elevating cytoplasmic Ca 2+ blocks the channel in a voltage-dependent fashion for periods of 2-3 ms. The frequency of these blocking events depends on cytoplasmic Ca 2+ and membrane voltage according to second-order kinetics. Alternative cations, such as Mg 2+ of Na + , block the yeast plasma-membrane K + channel in a similar but less pronounced manner.


Sign in / Sign up

Export Citation Format

Share Document