scholarly journals Intracellular Mg2+ is a voltage-dependent pore blocker of HCN channels

2008 ◽  
Vol 295 (2) ◽  
pp. C557-C565 ◽  
Author(s):  
Sriharsha Vemana ◽  
Shilpi Pandey ◽  
H. Peter Larsson

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization that creates time-dependent, inward rectifying currents, gated by the movement of the intrinsic voltage sensor S4. However, inward rectification of the HCN currents is not only observed in the time-dependent HCN currents, but also in the instantaneous HCN tail currents. Inward rectification can also be seen in mutant HCN channels that have mainly time-independent currents ( 5 ). In the present study, we show that intracellular Mg2+ functions as a voltage-dependent blocker of HCN channels, acting to reduce the outward currents. The affinity of HCN channels for Mg2+ is in the physiological range, with Mg2+ binding with an IC50 of 0.53 mM in HCN2 channels and 0.82 mM in HCN1 channels at +50 mV. The effective electrical distance for the Mg2+ binding site was found to be 0.19 for HCN1 channels, suggesting that the binding site is in the pore. Removing a cysteine in the selectivity filter of HCN1 channels reduced the affinity for Mg2+, suggesting that this residue forms part of the binding site deep within the pore. Our results suggest that Mg2+ acts as a voltage-dependent pore blocker and, therefore, reduces outward currents through HCN channels. The pore-blocking action of Mg2+ may play an important physiological role, especially for the slowly gating HCN2 and HCN4 channels. Mg2+ could potentially block outward hyperpolarizing HCN currents at the plateau of action potentials, thus preventing a premature termination of the action potential.

2006 ◽  
Vol 96 (2) ◽  
pp. 544-554 ◽  
Author(s):  
Susumu Koyama ◽  
Sarah B. Appel

A-type K+ current ( IA) is a rapidly inactivating voltage-dependent potassium current which can regulate the frequency of action potential (AP) generation. Increased firing frequency of ventral tegmental area (VTA) neurons is associated with the reinforcing effects of some drugs of abuse like nicotine and ethanol. In the present study, we classified dopamine (DA) and GABA VTA neurons, and investigated IA properties and the physiological role of IA in these neurons using conventional whole cell current- and voltage-clamp recording. DA VTA neurons had a mean firing frequency of 3.5 Hz with a long AP duration. GABA VTA neurons had a mean firing frequency of 16.7 Hz with a short AP duration. For IA properties, the voltage-dependence of steady-state IA activation and inactivation was similar in DA and GABA VTA neurons. IA inactivation was significantly faster and became faster at positive voltages in GABA neurons than DA neurons. Recovery from inactivation was significantly faster in DA neurons than GABA neurons. IA current density at full recovery was significantly larger in DA neurons than GABA neurons. In DA and GABA VTA neurons, latency to the first AP after the recovery from membrane hyperpolarization (repolarization latency) was measured. Longer repolarization latency was accompanied by larger IA current density in DA VTA neurons, compared with GABA VTA neurons. We suggest that IA contributes more to the regulation of AP generation in DA VTA neurons than in GABA VTA neurons.


1989 ◽  
Vol 62 (1) ◽  
pp. 109-118 ◽  
Author(s):  
M. Yoshimura ◽  
T. M. Jessell

1. The membrane properties of substantia gelatinosa (SG) neurons in an in vitro adult rat transverse spinal cord slice preparation with attached dorsal root have been examined. Intracellular recordings were obtained from identified SG neurons. 2. Seventy-six percent of SG neurons exhibited a time-dependent anomalous rectification (AR) when the membrane was hyperpolarized from the resting potential. The time-dependent AR was blocked by cesium (Cs+, 2 mM) but not by barium (Ba2+, 2 mM). Application of Cs+ itself caused membrane hyperpolarization in those SG neurons that expressed the time-dependent AR. The activation of the time-dependent AR was maximal at potentials 5-10 mV below the resting membrane potential. 3. In a few SG neurons, the current-voltage relationship revealed a marked inward rectification, even though there was no detectable time-dependent anomalous rectification during hyperpolarization. Analysis of the Ba2+- and Cs+-sensitivity of these neurons confirmed that SG neurons expressed two distinct ARs, one of which is fast and Ba2+-sensitive and the other of which is time-dependent and Ba2+-insensitive. 4. Fifty-one percent of SG neurons exhibited a transient outward rectification when hyperpolarizing current pulses were applied from potentials more positive than -60 mV or when depolarizing pulses were applied from potentials more negative than -65 mV. The transient outward rectification persisted for 0.3-2 s when hyperpolarizing pulses were applied at -55 mV. 5. The transient outward rectification was associated with a decrease in membrane resistance and was enhanced in low K+ solutions. 4-aminopyridine (4-AP, 2 mM) reversibly blocked the transient outward rectification. 6. The time-dependent anomalous and transient outward rectifying currents exerted opposite effects on the firing properties of SG neurons. Activation of the time-dependent AR increased neuronal excitability. In neurons that exhibited the time-dependent AR, membrane depolarization caused the appearance of a rebound depolarization that resulted in the generation of spikes with only a short delay after application of the depolarizing pulse. In contrast, the transient outward rectifying current markedly delayed spike firing in response to depolarizing pulses. This delay was blocked by application of 4-AP. 7. The diversity in response properties of subpopulations of SG neurons may result in part from this heterogeneity in membrane properties.


1992 ◽  
Vol 100 (5) ◽  
pp. 783-801 ◽  
Author(s):  
L W Haynes

Inside-out patches were excised from catfish rod or cone outer segments. Single channel and macroscopic currents were recorded from GMP-gated channels activated by 1 mM cGMP in low divalent buffered saline. Currents were blocked by the application of micromolar concentrations of l-cis-diltiazem to the cytoplasmic side of the patch. The concentration dependence of block indicated that a single molecule was sufficient to block a channel and that all channels were susceptible to block. The dissociation constant for the rod channel was an order of magnitude smaller than for the cone channel, but the voltage dependence of block was nearly identical. The macroscopic current-voltage relation in the presence of blocker was inwardly rectifying and superficially resembled voltage-dependent block by an impermeant blocker occluding the ion-conducting pore of the channel. Block by diltiazem acting from the extracellular side of the channel was investigated by including 5 microM diltiazem in the recording pipette solution. The macroscopic current-voltage relation again showed inward rectification, inconsistent with the idea that diltiazem acts by occluding the pore at the external side. The kinetics of block by diltiazem applied to the intra- and extracellular side were measured in cone patches containing only a single channel. The unbinding rates were similar in both cases, suggesting a single binding site. Differences in the binding rate were consistent with greater accessibility to the binding site from the cytoplasmic side. Block from the cytoplasmic side was independent of pH, suggesting that the state of ionization of diltiazem was not related to its ability to block the channel in a voltage-dependent fashion. These observations are inconsistent with a pore-occluding blocker, but could be explained if the hydrophobic portion of diltiazem partitioned into the hydrophobic core of the channel protein, perhaps altering the gating of the channel.


1989 ◽  
Vol 257 (3) ◽  
pp. C461-C469 ◽  
Author(s):  
W. C. Cole ◽  
K. M. Sanders

Outward currents of colonic smooth muscle cells were characterized by the whole cell voltage-clamp method. Four components of outward current were identified: a time-independent and three time-dependent components. The time-dependent current showed strong outward rectification positive to -25 mV and was blocked by tetraethylammonium. The time-dependent components were separated on the basis of their time courses, voltage dependence, and pharmacological sensitivities. They are as follows. 1) A Ca2+-activated K current sensitive to external Ca2+ and Ca2+ influx was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (0.1 X 10(-3) M) and nifedipine (1 X 10(-6) and was increased by elevated Ca2+ (8 X 10(-6) M) and BAY K 8644 (1 X 10(-6) M). 2) A "delayed rectifier" current was observed that decayed slowly with time and showed no voltage-dependent inactivation. 3) Spontaneous transient outward currents that were blocked by ryanodine (2 X 10(-6) M) were also recorded. The possible contributions of these currents to the electrical activity of colonic muscle cells in situ are discussed. Ca2+-activated K current may contribute a significant conductance to the repolarizing phase of electrical slow waves.


1997 ◽  
Vol 78 (2) ◽  
pp. 884-890 ◽  
Author(s):  
Ken Nakazawa ◽  
Min Liu ◽  
Kazuhide Inoue ◽  
Yasuo Ohno

Nakazawa, Ken, Min Liu, Kazuhide Inoue, and Yasuo Ohno. Voltage-dependent gating of ATP-activated channels in PC12 cells. J. Neurophysiol. 78: 884–890, 1997. The possibility that P2X receptors exhibit voltage-dependent gating in a similar manner to nicotinic receptors was investigated in rat pheochromocytoma cells with the use of whole cell voltage-clamp techniques. In the presence of extracellular ATP, slowly activating inward currents were elicited by stepping from −50 mV to potentials more negative than −80 mV; these currents had a time constant of ∼60 ms at −120 mV. This slowly activating component (as a fraction of the total ATP-induced current) increased with membrane hyperpolarization from −80 to −100 mV and was much increased when depolarizing prepulses were applied, although the time constant of activation was not altered by depolarizations. The fraction of the slowly activating current and its time constant were decreased as the ATP concentration was increased from 10 to 300 μM. Thus it has been demonstrated that voltage-dependent gating of ATP-activated channels does occur in PC12 cells, and that this gating is modified by agonist concentration. It is possible that such gating may serve as a postsynaptic mechanism to facilitate excitatory neurotransmission by contributing to the inward rectification of the ATP-activated currents.


1997 ◽  
Vol 77 (1) ◽  
pp. 421-426 ◽  
Author(s):  
Peter Grafe ◽  
Stefan Quasthoff ◽  
Julian Grosskreutz ◽  
Christian Alzheimer

Grafe, Peter, Stefan Quasthoff, Julian Grosskreutz, and Christian Alzheimer. Function of the hyperpolarization-activated inward rectification in nonmyelinated peripheral rat and human axons. J. Neurophysiol. 77: 421–426, 1997. The function of time-dependent, hyperpolarization-activated inward rectification was analyzed on compound potentials of nonmyelinated axons in the mammalian peripheral nervous system. Isolated rat vagus nerves and fascicles of biopsied human sural nerve were tested in a three-chambered, Vaseline-gap organ bath at 37°C. Inward rectification was assessed by recording the effects of long-lasting hyperpolarizing currents on electrical excitability with the use of the method of threshold electrotonus (program QTRAC, copyright Institute of Neurology, London, UK) and by measuring activity-dependent changes in conduction velocity and membrane potential. Prominent time-dependent, cesium-sensitive inward rectification was revealed in rat vagus and human sural nerve by recording threshold electrotonus to 200-ms hyperpolarizing current pulses. A slowing of compound action potential conduction was observed during a gradual increase in the stimulation frequency from 0.1 to 3 Hz. Above a stimulation frequency of 0.3 Hz, this slowing of conduction was enhanced during bath application of 1 mM cesium. Cesium did not alter action potential waveforms during stimulation at frequencies <1 Hz. Cesium-induced slowing in action potential conduction was correlated with membrane hyperpolarization. The hyperpolarization by cesium was stronger during higher stimulation frequencies and small in unstimulated nerves. These data show that a cesium-sensitive, time-dependent inward rectification in peripheral rat and human nonmyelinated nerve fibers limits the slowing in conduction seen in such axons at action potential frequencies higher than ∼0.3 Hz.


2003 ◽  
Vol 123 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Sriharsha Vemana ◽  
Shilpi Pandey ◽  
H. Peter Larsson

Hyperpolarization-activated, cyclic nucleotide–gated ion channels (HCN) mediate an inward cation current that contributes to spontaneous rhythmic firing activity in the heart and the brain. HCN channels share sequence homology with depolarization-activated Kv channels, including six transmembrane domains and a positively charged S4 segment. S4 has been shown to function as the voltage sensor and to undergo a voltage-dependent movement in the Shaker K+ channel (a Kv channel) and in the spHCN channel (an HCN channel from sea urchin). However, it is still unknown whether S4 undergoes a similar movement in mammalian HCN channels. In this study, we used cysteine accessibility to determine whether there is voltage-dependent S4 movement in a mammalian HCN1 channel. Six cysteine mutations (R247C, T249C, I251C, S253C, L254C, and S261C) were used to assess S4 movement of the heterologously expressed HCN1 channel in Xenopus oocytes. We found a state-dependent accessibility for four S4 residues: T249C and S253C from the extracellular solution, and L254C and S261C from the internal solution. We conclude that S4 moves in a voltage-dependent manner in HCN1 channels, similar to its movement in the spHCN channel. This S4 movement suggests that the role of S4 as a voltage sensor is conserved in HCN channels. In addition, to determine the reason for the different cAMP modulation and the different voltage range of activation in spHCN channels compared with HCN1 channels, we constructed a COOH-terminal–deleted spHCN. This channel appeared to be similar to a COOH-terminal–deleted HCN1 channel, suggesting that the main functional differences between spHCN and HCN1 channels are due to differences in their COOH termini or in the interaction between the COOH terminus and the rest of the channel protein in spHCN channels compared with HCN1 channels.


2012 ◽  
Vol 139 (3) ◽  
pp. 245-259 ◽  
Author(s):  
Tai-An Liu ◽  
Hsueh-Kai Chang ◽  
Ru-Chi Shieh

Outward currents through Kir2.1 channels play crucial roles in controlling the electrical properties of excitable cells, and such currents are subjected to voltage-dependent block by intracellular Mg2+ and polyamines that bind to both high- and low-affinity sites on the channels. Under physiological conditions, high-affinity block is saturated and yet outward Kir2.1 currents can still occur, implying that high-affinity polyamine block cannot completely eliminate outward Kir2.1 currents. However, the underlying molecular mechanism remains unknown. Here, we show that high-affinity spermidine block, rather than completely occluding the single-channel pore, induces a subconducting state in which conductance is 20% that of the fully open channel. In a D172N mutant lacking the high-affinity polyamine-binding site, spermidine does not induce such a substate. However, the kinetics for the transitions between the substate and zero-current state in wild-type channels is the same as that of low-affinity block in the D172N mutant, supporting the notion that these are identical molecular events. Thus, the residual outward current after high-affinity spermidine block is susceptible to low-affinity block, which determines the final amplitude of the outward current. This study provides a detailed insight into the mechanism underlying the emergence of outward Kir2.1 currents regulated by inward rectification attributed to high- and low-affinity polyamine blocks.


2018 ◽  
Vol 150 (8) ◽  
pp. 1203-1213 ◽  
Author(s):  
Claudia P. Alvarez-Baron ◽  
Vadim A. Klenchin ◽  
Baron Chanda

Hyperpolarization-activated, cyclic nucleotide–gated (HCN) channels generate rhythmic activity in the heart and brain. Isoform-specific functional differences reflect the specializations required for the various roles that they play. Despite a high sequence and structural similarity, HCN isoforms differ greatly in their response to cyclic nucleotides. Cyclic AMP (cAMP) enhances the activity of HCN2 and HCN4 isoforms by shifting the voltage dependence of activation to more depolarized potentials, whereas HCN1 and HCN3 isoforms are practically insensitive to this ligand. Here, to determine the molecular basis for increased cAMP efficacy in HCN2 channels, we progressively mutate residues in the C-linker and cyclic nucleotide–binding domain (CNBD) of the mouse HCN2 to their equivalents in HCN1. We identify two clusters of mutations that determine the differences in voltage-dependent activation between these two isoforms. One maps to the C-linker region, whereas the other is in proximity to the cAMP-binding site in the CNBD. A mutant channel containing just five mutations (M485I, G497D, S514T, V562A, and S563G) switches cAMP sensitivity of full-length HCN2 to that of HCN1 channels. These findings, combined with a detailed analysis of various allosteric models for voltage- and ligand-dependent gating, indicate that these residues alter the ability of the C-linker to transduce signals from the CNBD to the pore gates of the HCN channel.


1991 ◽  
Vol 66 (3) ◽  
pp. 719-728 ◽  
Author(s):  
B. D. Birch ◽  
J. D. Kocsis ◽  
F. Di Gregorio ◽  
R. B. Bhisitkul ◽  
S. G. Waxman

1. Rat dorsal spinal roots were studied by the use of whole-nerve sucrose gap and intra-axonal recording techniques. A prominent time-dependent conductance increase as evidenced by a relaxation or "sag" in membrane potential toward resting potential was elicited in dorsal spinal roots by constant hyperpolarizing current pulses. The relaxation, or sag, indicative of inward rectification, reached a maximal level and then decayed during the current pulse. 2. The time-dependent sag elicited by hyperpolarization was reduced when Na+ or K+ was removed from the normal bath solution but was abolished with the removal of both Na+ and K+. Tetrodotoxin (TTX), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) did not affect the depolarization sag, suggesting that conventional voltage-dependent sodium and potassium channels do not underlie the inward rectification. 3. Cs+ in low concentrations completely abolished the inward rectification, whereas Ba2+ induced a partial block. 4. Current-voltage curves indicate that the magnitude of the depolarizing sag increases monotonically with increasing hyperpolarization. The time required to reach peak hyperpolarization, maximal sag potential, and the time between peak hyperpolarization and sag membrane potentials decreases with increasing levels of hyperpolarization. 5. The inward rectification is refractory to further stimulation during its decay phase, as revealed by paired-pulse protocols. This decay in inward rectification is both time and voltage dependent and is observed on a single axon level by the use of intra-axonal recording techniques as well as from whole-root recordings in the sucrose gap. 6. It is concluded that rat dorsal root fibers display a prominent time-dependent conductance increase in response to hyperpolarization that depends on both Na+ and K+ permeability and is blocked by Cs+. This rectification displays a decay phase that has not been previously described for similar conductances. It is argued that the Na+ component of this conductance is primarily responsible for stabilizing membrane potential near resting potential during periods of hyperpolarization.


Sign in / Sign up

Export Citation Format

Share Document