scholarly journals Interactions between Multiple Phosphorylation Sites in the Inactivation Particle of a K+ Channel

1998 ◽  
Vol 112 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Edward J. Beck ◽  
Roger G. Sorensen ◽  
Simon J. Slater ◽  
Manuel Covarrubias

Protein kinase C inhibits inactivation gating of Kv3.4 K+ channels, and at least two NH2-terminal serines (S15 and S21) appeared involved in this interaction (Covarrubias et al. 1994. Neuron. 13:1403–1412). Here we have investigated the molecular mechanism of this regulatory process. Site-directed mutagenesis (serine → alanine) revealed two additional sites at S8 and S9. The mutation S9A inhibited the action of PKC by ∼85%, whereas S8A, S15A, and S21A exhibited smaller reductions (41, 35, and 50%, respectively). In spite of the relatively large effects of individual S → A mutations, simultaneous mutation of the four sites was necessary to completely abolish inhibition of inactivation by PKC. Accordingly, a peptide corresponding to the inactivation domain of Kv3.4 was phosphorylated by specific PKC isoforms, but the mutant peptide (S[8,9,15,21]A) was not. Substitutions of negatively charged aspartate (D) for serine at positions 8, 9, 15, and 21 closely mimicked the effect of phosphorylation on channel inactivation. S → D mutations slowed the rate of inactivation and accelerated the rate of recovery from inactivation. Thus, the negative charge of the phosphoserines is an important incentive to inhibit inactivation. Consistent with this interpretation, the effects of S8D and S8E (E = Glu) were very similar, yet S8N (N = Asn) had little effect on the onset of inactivation but accelerated the recovery from inactivation. Interestingly, the effects of single S → D mutations were unequal and the effects of combined mutations were greater than expected assuming a simple additive effect of the free energies that the single mutations contribute to impair inactivation. These observations demonstrate that the inactivation particle of Kv3.4 does not behave as a point charge and suggest that the NH2-terminal phosphoserines interact in a cooperative manner to disrupt inactivation. Inspection of the tertiary structure of the inactivation domain of Kv3.4 revealed the topography of the phosphorylation sites and possible interactions that can explain the action of PKC on inactivation gating.

1999 ◽  
Vol 113 (5) ◽  
pp. 641-660 ◽  
Author(s):  
Henry H. Jerng ◽  
Mohammad Shahidullah ◽  
Manuel Covarrubias

Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174– 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163–174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603–626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316–2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance–voltage curve (∼5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specifc residue in the S4–S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404,406]I. However, this mutant did not exhibit disrupted closed state inactivation. A kinetic model that assumes coupling between channel closing and inactivation at depolarized membrane potentials accounts for the results. We propose that components of the pore's internal vestibule control both closing and inactivation in Kv4 K+ channels.


Author(s):  
Ehud Y. Isacoff ◽  
Yuh Nung Jan ◽  
Lily Yeh Jan

1988 ◽  
Vol 255 (6) ◽  
pp. H1554-H1557
Author(s):  
K. R. Courtney

Lidocaine blocks sodium channels during depolarizations. The rate of recovery (repriming) of drug-blocked channels between depolarizations is slowed by both membrane depolarization and by acidification. This modulation of recovery kinetics was studied using a single-electrode voltage clamp on atrial cells isolated from the bullfrog. The pH dependence of recovery from inactivation, in drug-free conditions, is opposite to that observed in myelinated nerves; recovery occurs faster at higher pH levels in these cardiac preparations. The combined pH dependence and voltage dependence of repriming kinetics during lidocaine treatment can be explained by assuming that channels occupied by neutral drug can reactivate most readily at a rate that appears to be coupled to recovery from channel inactivation.


1995 ◽  
Vol 74 (3) ◽  
pp. 1248-1257 ◽  
Author(s):  
Y. Furukawa

1. Inactivation of a cloned Aplysia K+ channel, AKv1.1a, expressed in Xenopus oocytes was examined by a cell-attached macropatch recording. A fast macroscopic inactivation (the time constant for decay was in the range of 20-40 ms) in response to a depolarizing command pulse was insensitive to the concentration of external K+ (2-100 mM KCl). 2. By contrast, recovery from inactivation was extremely slow and dependent on external K+. When the concentration of external KCl was 2-3 mM, a patched membrane had to be held at hyperpolarized potential for > 40 s for a full recovery. The recovery was greatly accelerated if external K+ concentration was increased. A tail current following a command pulse long enough to inactivate most of the channels showed a marked rising phase. 3. A consequence of the slow recovery from inactivation was that AKv1.1a showed a marked accumulation of the inactivation following repetitive pulses, even at low frequency (< 0.1 Hz). When two depolarizing pulses were applied at a short interval, the current during a second pulse was smaller than the current at the end of the preceding pulse. This is a phenomenon called "cumulative inactivation." The onset and the extent of cumulative inactivation of AKv1.1a were voltage dependent but relatively insensitive to external K+ concentration. An amino terminal deletion mutant of AKv1.1a that lacks the fast N-type inactivation did not show cumulative inactivation. 4. These results suggest that the inactivation gating by the amino terminal region of AKv1.1a has a similarity to open-channel blockade, and that the cumulative inactivation can also be dependent on the amino terminal cytoplasmic domain of K+ channels.


2017 ◽  
Vol 149 (3) ◽  
pp. 389-403 ◽  
Author(s):  
Eric J. Hsu ◽  
Wandi Zhu ◽  
Angela R. Schubert ◽  
Taylor Voelker ◽  
Zoltan Varga ◽  
...  

Functional eukaryotic voltage-gated Na+ (NaV) channels comprise four domains (DI–DIV), each containing six membrane-spanning segments (S1–S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1–S4), which together form a voltage-sensing domain (VSD). A critical NaV channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair NaV channel inactivation. These locations include the DIII–DIV linker, the DIII S4–S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII–DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1393
Author(s):  
Thanyaporn Dechtawewat ◽  
Sittiruk Roytrakul ◽  
Yodying Yingchutrakul ◽  
Sawanya Charoenlappanit ◽  
Bunpote Siridechadilok ◽  
...  

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


1997 ◽  
Vol 110 (5) ◽  
pp. 579-589 ◽  
Author(s):  
Riccardo Olcese ◽  
Ramón Latorre ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Δ(6–46) K+ channel and in the nonconducting mutant (Shaker H4-Δ(6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547–556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to −90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non–slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011–1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.


2004 ◽  
Vol 92 (5) ◽  
pp. 3134-3141 ◽  
Author(s):  
Yuki Hayashida ◽  
Andrew T. Ishida

We tested whether dopamine receptor activation modulates the voltage-gated Na+ current of goldfish retinal ganglion cells, using a fast voltage-clamp amplifier, perforated-patch whole cell mode, and a physiological extracellular Na+ concentration. As found in other cells, activators of D1-type dopamine receptors and of protein kinase A reduced the amplitude of current activated by depolarizations from resting potential without altering the current kinetics or activation range. However, D1-type dopamine receptor activation also accelerated the rate of entry into inactivation during subthreshold depolarizations and slowed the rate of recovery from inactivation after single, brief depolarizations. Our results provide the first evidence in any preparation that D1-type receptor activation can produce both of these latter effects.


Sign in / Sign up

Export Citation Format

Share Document