scholarly journals Calcium Release Flux Underlying Ca2+ Sparks of Frog Skeletal Muscle

1999 ◽  
Vol 114 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Eduardo Ríos ◽  
Michael D. Stern ◽  
Adom González ◽  
Gonzalo Pizarro ◽  
Natalia Shirokova

An algorithm for the calculation of Ca2+ release flux underlying Ca2+ sparks (Blatter, L.A., J. Hüser, and E. Ríos. 1997. Proc. Natl. Acad. Sci. USA. 94:4176–4181) was modified and applied to sparks obtained by confocal microscopy in single frog skeletal muscle fibers, which were voltage clamped in a two-Vaseline gap chamber or permeabilized and immersed in fluo-3–containing internal solution. The performance of the algorithm was characterized on sparks obtained by simulation of fluorescence due to release of Ca2+ from a spherical source, in a homogeneous three-dimensional space that contained components representing cytoplasmic molecules and Ca2+ removal processes. Total release current, as well as source diameter and noise level, was varied in the simulations. Derived release flux or current, calculated by volume integration of the derived flux density, estimated quite closely the current used in the simulation, while full width at half magnitude of the derived release flux was a good monitor of source size only at diameters >0.7 μm. On an average of 157 sparks of amplitude >2 U resting fluorescence, located automatically in a representative voltage clamp experiment, the algorithm reported a release current of 16.9 pA, coming from a source of 0.5 μm, with an open time of 6.3 ms. Fewer sparks were obtained in permeabilized fibers, so that the algorithm had to be applied to individual sparks or averages of few events, which degraded its performance in comparable tests. The average current reported for 19 large sparks obtained in permeabilized fibers was 14.4 pA. A minimum estimate, derived from the rate of change of dye-bound Ca2+ concentration, was 8 pA. Such a current would require simultaneous opening of between 8 and 60 release channels with unitary Ca2+ currents of the level recorded in bilayer experiments. Real sparks differ from simulated ones mainly in having greater width. Correspondingly, the algorithm reported greater spatial extent of the source for real sparks. This may again indicate a multichannel origin of sparks, or could reflect limitations in spatial resolution.

1989 ◽  
Vol 67 (8) ◽  
pp. 890-895 ◽  
Author(s):  
Makoto Koshita ◽  
Toshiharu Oba

Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1–5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1–5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.Key words: Ca2+ release, sarcoplasmic reticulum, caffeine, tetanus, skeletal muscle.


1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 271 (2) ◽  
pp. C540-C546 ◽  
Author(s):  
M. Beltran ◽  
R. Bull ◽  
P. Donoso ◽  
C. Hidalgo

The effect of halothane on calcium release kinetics was studied in triad-enriched sarcoplasmic reticulum vesicles from frog skeletal muscle. Release from vesicles passively equilibrated with 3 mM 45CaCl2 was measured in the millisecond time range by use of a fast-filtration system. Halothane (400 microM) increased release rate constants at pH 7.1 and 7.4 as a function of extravesicular pCa. In contrast, halothane at pH 6.8 produced the same stimulation of release from pCa 7.0 to 3.0; no release took place in these conditions in the absence of halothane. Halothane shifted the calcium activation curve at pH 7.1, but not at pH 7.4, to the left and increased channel open probability at pH 7.1 in the cis pCa range of 7.0 to 5.0. These results indicate that cytosolic pCa and pH modulate the stimulatory effects of halothane on calcium release. Furthermore, halothane stimulated release in frog skeletal muscle at low pH and resting calcium concentration, indicating that in frog muscle halothane can override the closing of the release channels produced by these conditions, as it does in malignant hyperthermia-susceptible porcine muscle.


1998 ◽  
Vol 111 (2) ◽  
pp. 207-224 ◽  
Author(s):  
Alain Lacampagne ◽  
Michael G. Klein ◽  
Martin F. Schneider

The modulation by internal free [Mg2+] of spontaneous calcium release events (Ca2+ “sparks”) from the sarcoplasmic reticulum (SR) was studied in depolarized notched frog skeletal muscle fibers using a laser scanning confocal microscope in line-scan mode (x vs. t). Over the range of [Mg2+] from 0.13 to 1.86 mM, decreasing the [Mg2+] induced an increase in the frequency of calcium release events in proportion to [Mg2+]−1.6. The change of event frequency was not due to changes in [Mg-ATP] or [ATP]. Analysis of individual SR calcium release event properties showed that the variation in event frequency induced by the change of [Mg2+] was not accompanied by any changes in the spatiotemporal spread (i.e., spatial half width or temporal half duration) of Ca2+ sparks. The increase in event frequency also had no effect on the distribution of event amplitudes. Finally, the rise time of calcium sparks was independent of the [Mg2+], indicating that the open time of the SR channel or channels underlying spontaneous calcium release events was not altered by [Mg2+] over the range tested. These results suggest that in resting skeletal fibers, [Mg2+] modulates the SR calcium release channel opening frequency by modifying the average closed time of the channel without altering the open time. A kinetic reaction scheme consistent with our results and those of bilayer and SR vesicle experiments indicates that physiological levels of resting Mg2+ may inhibit channel opening by occupying the site for calcium activation of the SR calcium release channel.


Sign in / Sign up

Export Citation Format

Share Document