scholarly journals Extracellular Mg2+ Modulates Slow Gating Transitions and the Opening of Drosophila Ether-à-Go-Go Potassium Channels

2000 ◽  
Vol 115 (3) ◽  
pp. 319-338 ◽  
Author(s):  
Chih-Yung Tang ◽  
Francisco Bezanilla ◽  
Diane M. Papazian

We have characterized the effects of prepulse hyperpolarization and extracellular Mg2+ on the ionic and gating currents of the Drosophila ether-à-go-go K+ channel (eag). Hyperpolarizing prepulses significantly slowed channel opening elicited by a subsequent depolarization, revealing rate-limiting transitions for activation of the ionic currents. Extracellular Mg2+ dramatically slowed activation of eag ionic currents evoked with or without prepulse hyperpolarization and regulated the kinetics of channel opening from a nearby closed state(s). These results suggest that Mg2+ modulates voltage-dependent gating and pore opening in eag channels. To investigate the mechanism of this modulation, eag gating currents were recorded using the cut-open oocyte voltage clamp. Prepulse hyperpolarization and extracellular Mg2+ slowed the time course of ON gating currents. These kinetic changes resembled the results at the ionic current level, but were much smaller in magnitude, suggesting that prepulse hyperpolarization and Mg2+ modulate gating transitions that occur slowly and/or move relatively little gating charge. To determine whether quantitatively different effects on ionic and gating currents could be obtained from a sequential activation pathway, computer simulations were performed. Simulations using a sequential model for activation reproduced the key features of eag ionic and gating currents and their modulation by prepulse hyperpolarization and extracellular Mg2+. We have also identified mutations in the S3–S4 loop that modify or eliminate the regulation of eag gating by prepulse hyperpolarization and Mg2+, indicating an important role for this region in the voltage-dependent activation of eag.

1997 ◽  
Vol 110 (5) ◽  
pp. 579-589 ◽  
Author(s):  
Riccardo Olcese ◽  
Ramón Latorre ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Δ(6–46) K+ channel and in the nonconducting mutant (Shaker H4-Δ(6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547–556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to −90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non–slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011–1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.


1996 ◽  
Vol 108 (3) ◽  
pp. 143-155 ◽  
Author(s):  
F Noceti ◽  
P Baldelli ◽  
X Wei ◽  
N Qin ◽  
L Toro ◽  
...  

In voltage-dependent ion channels, the gating of the channels is determined by the movement of the voltage sensor. This movement reflects the rearrangement of the protein in response to a voltage stimulus, and it can be thought of as a net displacement of elementary charges (e0) through the membrane (z: effective number of elementary charges). In this paper, we measured z in Shaker IR (inactivation removed) K+ channels, neuronal alpha 1E and alpha 1A, and cardiac alpha 1C Ca2+ channels using two methods: (a) limiting slope analysis of the conductance-voltage relationship and (b) variance analysis, to evaluate the number of active channels in a patch, combined with the measurement of charge movement in the same patch. We found that in Shaker IR K+ channels the two methods agreed with a z congruent to 13. This suggests that all the channels that gate can open and that all the measured charge is coupled to pore opening in a strictly sequential kinetic model. For all Ca2+ channels the limiting slope method gave consistent results regardless of the presence or type of beta subunit tested (z = 8.6). However, as seen with alpha 1E, the variance analysis gave different results depending on the beta subunit used. alpha 1E and alpha 1E beta 1a gave higher z values (z = 14.77 and z = 15.13 respectively) than alpha 1E beta 2a (z = 9.50, which is similar to the limiting slope results). Both the beta 1a and beta 2a subunits, coexpressed with alpha 1E Ca2+ channels facilitated channel opening by shifting the activation curve to more negative potentials, but only the beta 2a subunit increased the maximum open probability. The higher z using variance analysis in alpha 1E and alpha 1E beta 1a can be explained by a set of charges not coupled to pore opening. This set of charges moves in transitions leading to nulls thus not contributing to the ionic current fluctuations but eliciting gating currents. Coexpression of the beta 2a subunit would minimize the fraction of nulls leading to the correct estimation of the number of channels and z.


1998 ◽  
Vol 111 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Fred S.P. Chen ◽  
David Fedida

4-Aminopyridine (4-AP) binds to potassium channels at a site or sites in the inner mouth of the pore and is thought to prevent channel opening. The return of hKv1.5 off-gating charge upon repolarization is accelerated by 4-AP and it has been suggested that 4-AP blocks slow conformational rearrangements during late closed states that are necessary for channel opening. On the other hand, quinidine, an open channel blocker, slows the return or immobilizes off-gating charge only at opening potentials (>−25 mV). The aim of this study was to use quini-dine as a probe of open channels to test the kinetic state of 4-AP-blocked channels. In the presence of 0.2–1 mM 4-AP, quinidine slowed charge return and caused partial charge immobilization, corresponding to an increase in the Kd of ∼20-fold. Peak off-gating currents were reduced and decay was slowed ∼2- to 2.5-fold at potentials negative to the threshold of channel activation and during depolarizations shorter than normally required for channel activation. This demonstrated access of quinidine to 4-AP-blocked channels, a lack of competition between the two drugs, and implied allosteric modulation of the quinidine binding site by 4-AP resident within the channel. Single channel recordings also showed that quinidine could modulate the 4-AP-induced closure of the channels, with the result that frequent channel reopenings were observed when both drugs were present. We propose that 4-AP-blocked channels exist in a partially open, nonconducting state that allows access to quinidine, even at more negative potentials and during shorter depolarizations than those required for channel activation.


2005 ◽  
Vol 126 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Frank T. Horrigan ◽  
Stefan H. Heinemann ◽  
Toshinori Hoshi

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state.


1999 ◽  
Vol 277 (4) ◽  
pp. C739-C745 ◽  
Author(s):  
Bagnólia A. Silva ◽  
Viviane L. A. Nouailhetas ◽  
Jeannine Aboulafia

Desensitization of ANG II tonic contractile response of the guinea pig ileum is related to membrane repolarization determined by Ca2+-activated K+(maxi-K+) channel opening. ANG II-stimulated depolarized myocytes presented sustained activation of maxi-K+ channels, characterized by reduction from 415 to 12 ms of the closed time constant. ANG II desensitization was prevented by 100 nM iberiotoxin, being reversible within 30 min. Depolarization by KCl, higher than 4 mM, impaired desensitization, suggesting that the membrane potential must attain a threshold to counteract the repolarization induced by maxi-K+ channel opening. Once this value is attained, there is no time dependency because the desensitization process was shut off by addition of KCl along the time course of the tonic response. In contrast, the sustained ACh tonic component was not altered by these maneuvers. We conclude that desensitization of the ANG II tonic component is foremost due to the opening of maxi-K+ channels, leading to membrane repolarization, thus closing the voltage-dependent Ca2+ channels responsible for the Ca2+ influx that sustains the tonic component in this muscle.


1995 ◽  
Vol 268 (3) ◽  
pp. C732-C740 ◽  
Author(s):  
A. Neely ◽  
R. Olcese ◽  
P. Baldelli ◽  
X. Wei ◽  
L. Birnbaumer ◽  
...  

Ca2+ channels are heteromultimeric proteins in which the alpha 1-subunit forms the voltage-dependent Ca(2+)-selective ionic channel. We reported recently that coexpression of the beta-subunit with the cardiac alpha 1-subunit (alpha 1C) facilitates channel opening without affecting either the amplitude or the time course of the gating currents (13). Here we present evidence for the existence of two modes of channel opening. Xenopus oocytes expressing the alpha 1C-subunit alone display two modes of activation as indicated by the double-exponential time course of macroscopic ionic currents and the two open-time distributions of single channels. Coexpression of the beta-subunit potentiates Ca2+ currents by a relative increase of the fast-activating component, an acceleration of the slow component, and a larger proportion of long openings. We propose that multiple modes of gating are encoded in the alpha 1-subunit and that the beta-subunit increases Ca2+ channel opening by favoring a willing mode of gating in which the final transitions leading to channel opening are facilitated. In addition, we show that the carboxy terminus of alpha 1C also modulates the channel-gating behavior.


1997 ◽  
Vol 109 (4) ◽  
pp. 449-461 ◽  
Author(s):  
Gonzalo Ferreira ◽  
Jianxun Yi ◽  
Eduardo Ríos ◽  
Roman Shirokov

It is widely believed that Ba2+ currents carried through L-type Ca2+ channels inactivate by a voltage- dependent mechanism similar to that described for other voltage-dependent channels. Studying ionic and gating currents of rabbit cardiac Ca2+ channels expressed in different subunit combinations in tsA201 cells, we found a phase of Ba2+ current decay with characteristics of ion-dependent inactivation. Upon a long duration (20 s) depolarizing pulse, IBa decayed as the sum of two exponentials. The slow phase (τ ≈ 6 s, 21°C) was parallel to a reduction of gating charge mobile at positive voltages, which was determined in the same cells. The fast phase of current decay (τ ≈ 600 ms), involving about 50% of total decay, was not accompanied by decrease of gating currents. Its amplitude depended on voltage with a characteristic U-shape, reflecting reduction of inactivation at positive voltages. When Na+ was used as the charge carrier, decay of ionic current followed a single exponential, of rate similar to that of the slow decay of Ba2+ current. The reduction of Ba2+ current during a depolarizing pulse was not due to changes in the concentration gradients driving ion movement, because Ba2+ entry during the pulse did not change the reversal potential for Ba2+. A simple model of Ca2+-dependent inactivation (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1993. J. Gen. Physiol. 102:1005–1030) robustly accounts for fast Ba2+ current decay assuming the affinity of the inactivation site on the α1 subunit to be 100 times lower for Ba2+ than Ca2+.


1998 ◽  
Vol 111 (5) ◽  
pp. 625-638 ◽  
Author(s):  
Michel J. Roux ◽  
Riccardo Olcese ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.


2010 ◽  
Vol 136 (1) ◽  
pp. 83-99 ◽  
Author(s):  
Andrew James Horne ◽  
Christian Joseph Peters ◽  
Thomas William Claydon ◽  
David Fedida

The Kv1.2 channel, with its high resolution crystal structure, provides an ideal model for investigating conformational changes associated with channel gating, and fluorescent probes attached at the extracellular end of S4 are a powerful way to gain a more complete understanding of the voltage-dependent activity of these dynamic proteins. Tetramethylrhodamine-5-maleimide (TMRM) attached at A291C reports two distinct rearrangements of the voltage sensor domains, and a comparative fluorescence scan of the S4 and S3–S4 linker residues in Shaker and Kv1.2 shows important differences in their emission at other homologous residues. Kv1.2 shows a rapid decrease in A291C emission with a time constant of 1.5 ± 0.1 ms at 60 mV (n = 11) that correlates with gating currents and reports on translocation of the S4 and S3–S4 linker. However, unlike any Kv channel studied to date, this fast component is dwarfed by a larger, slower quenching of TMRM emission during depolarizations between −120 and −50 mV (τ = 21.4 ± 2.1 ms at 60 mV, V1/2 of −73.9 ± 1.4 mV) that is not seen in either Shaker or Kv1.5 and that comprises >60% of the total signal at all activating potentials. The slow fluorescence relaxes after repolarization in a voltage-dependent manner that matches the time course of Kv1.2 ionic current deactivation. Fluorophores placed directly in S1 and S2 at I187 and T219 recapitulate the time course and voltage dependence of slow quenching. The slow component is lost when the extracellular S1–S2 linker of Kv1.2 is replaced with that of Kv1.5 or Shaker, suggesting that it arises from a continuous internal rearrangement within the voltage sensor, initiated at negative potentials but prevalent throughout the activation process, and which must be reversed for the channel to close.


1995 ◽  
Vol 106 (4) ◽  
pp. 617-640 ◽  
Author(s):  
M F Sheets ◽  
D A Hanck

The gating charge and voltage dependence of the open state to the inactivated state (O-->I) transition was measured for the voltage-dependent mammalian cardiac Na channel. Using the site 3 toxin, Anthopleurin-A (Ap-A), which selectively modifies the O-->I transition (see Hanck, D. A., and M. F. Sheets. 1995. Journal of General Physiology. 106:601-616), we studied Na channel gating currents (Ig) in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Comparison of Ig recorded in response to step depolarizations before and after modification by Ap-A toxin showed that toxin-modified gating currents decayed faster and had decreased initial amplitudes. The predominate change in the charge-voltage (Q-V) relationship was a reduction in gating charge at positive potentials such that Qmax was reduced by 33%, and the difference between charge measured in Ap-A toxin and in control represented the gating charge associated with Na channels undergoing inactivation by O-->I. By comparing the time course of channel activation (represented by the gating charge measured in Ap-A toxin) and gating charge associated with the O-->I transition (difference between control and Ap-A charge), the influence of activation on the time course of inactivation could be accounted for and the inherent voltage dependence of the O-->I transition determined. The O-->I transition for cardiac Na channels had a valence of 0.75 e-. The total charge of the cardiac voltage-gated Na channel was estimated to be 5 e-. Because charge is concentrated near the opening transition for this isoform of the channel, the time constant of the O-->I transition at 0 mV could also be estimated (0.53 ms, approximately 12 degrees C). Prediction of the mean channel open time-voltage relationship based upon the magnitude and valence of the O-->C and O-->I rate constants from INa and Ig data matched data previously reported from single Na channel studies in heart at the same temperature.


Sign in / Sign up

Export Citation Format

Share Document