scholarly journals Structure–Function Relations of the First and Fourth Predicted Extracellular Linkers of the Type IIa Na+/Pi Cotransporter

2004 ◽  
Vol 124 (5) ◽  
pp. 475-488 ◽  
Author(s):  
Colin Ehnes ◽  
Ian C. Forster ◽  
Katja Kohler ◽  
Andrea Bacconi ◽  
Gerti Stange ◽  
...  

The putative first intracellular and third extracellular linkers are known to play important roles in defining the transport properties of the type IIa Na+-coupled phosphate cotransporter (Kohler, K., I.C. Forster, G. Stange, J. Biber, and H. Murer. 2002b. J. Gen. Physiol. 120:693–705). To investigate whether other stretches that link predicted transmembrane domains are also involved, the substituted cysteine accessibility method (SCAM) was applied to sites in the predicted first and fourth extracellular linkers (ECL-1 and ECL-4). Mutants based on the wild-type (WT) backbone, with substituted novel cysteines, were expressed in Xenopus oocytes, and their function was assayed by isotope uptake and electrophysiology. Functionally important sites were identified in both linkers by exposing cells to membrane permeant and impermeant methanethiosulfonate (MTS) reagents. The cysteine modification reaction rates for sites in ECL-1 were faster than those in ECL-4, which suggested that the latter were less accessible from the extracellular medium. Generally, a finite cotransport activity remained at the end of the modification reaction. The change in activity was due to altered voltage-dependent kinetics of the Pi-dependent current. For example, cys substitution at Gly-134 in ECL-1 resulted in rate-limiting, voltage-independent cotransport activity for V ≤ −80 mV, whereas the WT exhibited a linear voltage dependency. After cys modification, this mutant displayed a supralinear voltage dependency in the same voltage range. The opposite behavior was documented for cys substitution at Met-533 in ECL-4. Modification of cysteines at two other sites in ECL-1 (Ile-136 and Phe-137) also resulted in supralinear voltage dependencies for hyperpolarizing potentials. Taken together, these findings suggest that ECL-1 and ECL-4 may not directly form part of the transport pathway, but specific sites in these linkers can interact directly or indirectly with parts of NaPi-IIa that undergo voltage-dependent conformational changes and thereby influence the voltage dependency of cotransport.

2020 ◽  
Author(s):  
Sushil Pangeni ◽  
Jigneshkumar Dahyabhai Prajapati ◽  
Jayesh Arun Bafna ◽  
Nilam Mohamed ◽  
Werner M. Nau ◽  
...  

Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation across CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations provided an atomistic view on the permeation. It can be concluded that a concentration gradient of 1 M Ptm leads to a translocation rate of about 1 molecule per second and per channel.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Laia Francàs ◽  
Sacha Corby ◽  
Shababa Selim ◽  
Dongho Lee ◽  
Camilo A. Mesa ◽  
...  

AbstractNi/Fe oxyhydroxides are the best performing Earth-abundant electrocatalysts for water oxidation. However, the origin of their remarkable performance is not well understood. Herein, we employ spectroelectrochemical techniques to analyse the kinetics of water oxidation on a series of Ni/Fe oxyhydroxide films: FeOOH, FeOOHNiOOH, and Ni(Fe)OOH (5% Fe). The concentrations and reaction rates of the oxidised states accumulated during catalysis are determined. Ni(Fe)OOH is found to exhibit the fastest reaction kinetics but accumulates fewer states, resulting in a similar performance to FeOOHNiOOH. The later catalytic onset in FeOOH is attributed to an anodic shift in the accumulation of oxidised states. Rate law analyses reveal that the rate limiting step for each catalyst involves the accumulation of four oxidised states, Ni-centred for Ni(Fe)OOH but Fe-centred for FeOOH and FeOOHNiOOH. We conclude by highlighting the importance of equilibria between these accumulated species and reactive intermediates in determining the activity of these materials.


2004 ◽  
Vol 124 (5) ◽  
pp. 489-503 ◽  
Author(s):  
Colin Ehnes ◽  
Ian C. Forster ◽  
Andrea Bacconi ◽  
Katja Kohler ◽  
Jürg Biber ◽  
...  

Functionally important sites in the predicted first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter (NaPi-IIa) were identified by cysteine scanning mutagenesis (Ehnes et al., 2004). Cysteine substitution or modification with impermeant and permeant methanethiosulfonate (MTS) reagents at certain sites resulted in changes to the steady-state voltage dependency of the cotransport mode (1 mM Pi, 100 mM Na+ at pH 7.4) of the mutants. At Gly-134 (ECL-1) and Met-533 (ECL-4), complementary behavior of the voltage dependency was documented with respect to the effect of cys-substitution and modification. G134C had a weak voltage dependency that became even stronger than that of the wild type (WT) after MTS incubation. M533C showed a WT-like voltage dependency that became markedly weaker after MTS incubation. To elucidate the underlying mechanism, the steady-state and presteady-state kinetics of these mutants were studied in detail. The apparent affinity constants for Pi and Na+ did not show large changes after MTS exposure. However, the dependency on external protons was changed in a complementary manner for each mutant. This suggested that cys substitution at Gly-134 or modification of Cys-533 had induced similar conformational changes to alter the proton modulation of transport kinetics. The changes in steady-state voltage dependency correlated with changes in the kinetics of presteady-state charge movements determined in the absence of Pi, which suggested that voltage-dependent transitions in the transport cycle were altered. The steady-state and presteady-state behavior was simulated using an eight-state kinetic model in which the transition rate constants of the empty carrier and translocation of the fully loaded carrier were found to be critical determinants of the transport kinetics. The simulations predict that cys substitution at Gly-134 or cys modification of Cys-533 alters the preferred orientation of the empty carrier from an inward to outward-facing conformation for hyperpolarizing voltages.


1980 ◽  
Vol 75 (5) ◽  
pp. 511-529 ◽  
Author(s):  
J F Fiekers ◽  
P M Spannbauer ◽  
B Scubon-Mulieri ◽  
R L Parsons

The voltage dependence of carbachol-induced desensitization has been analyzed in potassium-depolarized frog sartorius muscle preparations with voltage clamp techniques over a wide voltage range (-120 to +40 mV). Desensitization developed exponentially at all voltages with tau, the time constant of desensitization onset, varying as a logarithmic function of membrane voltage. The voltage dependence of tau remained in calcium-deficient solutions and was not altered by elevating either the level of extracellular or intracellular calcium. We have analyzed our results according to a simple sequential kinetic scheme in which the rate-limiting step in the development of desensitization is a transition of the receptor channel complex from the activated conducting state to a desensitized, nonconducting state. We conclude (a) that the observed voltage sensitivity of desensitization primarily resides in the voltage dependence of this transition, and (b) the kinetics of activation appear to have a greater influence on the observed rate of desensitization than on its voltage dependence. The magnitude of the voltage dependence suggests that a greater change in free energy is required for the transition to the desensitized state than for the transition between the open and closed states of the receptor channel complex.


2004 ◽  
Vol 279 (19) ◽  
pp. 19559-19565 ◽  
Author(s):  
Nian-Lin R. Han ◽  
John D. Clements ◽  
Joseph W. Lynch

In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg271to Lys276in the M2-M3 domain of the homomeric α1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.


1990 ◽  
Vol 96 (3) ◽  
pp. 603-630 ◽  
Author(s):  
C F Chen ◽  
P Hess

We have analyzed the gating kinetics of T-type Ca channels in 3T3 fibroblasts. Our results show that channel closing, inactivation, and recovery from inactivation each include a voltage-independent step which becomes rate limiting at extreme potentials. The data require a cyclic model with a minimum of two closed, one open, and two inactivated states. Such a model can produce good fits to our data even if the transitions between closed states are the only voltage-dependent steps in the activating pathway leading from closed to inactivated states. Our analysis suggests that the channel inactivation step, as well as the direct opening and closing transitions, are not intrinsically voltage sensitive. Single-channel recordings are consistent with this scheme. As expected, each channel produces a single burst per opening and then inactivates. Comparison of the kinetics of T-type Ca current in fibroblasts and neuronal cells reveals significant differences which suggest that different subtypes of T-type Ca channels are expressed differentially in a tissue specific manner.


1981 ◽  
Vol 77 (1) ◽  
pp. 1-22 ◽  
Author(s):  
G S Oxford

To study the kinetic and steady-state properties of voltage-dependent sodium conductance activation, squid giant axons were perfused internally with either pronase or N-bromoacetamide and voltage clamped. Parameters of activation, tau m and gNa(V), and deactivation, tau Na, were measured and compared with those obtained from control axons under the assumption that gNa oc m3h of the Hodgkin-Huxley scheme. tau m(V) values obtained from the turn-on of INa agree well with control axons and previous determinations by others. tau Na(V) values derived from Na tail currents were also unchanged by pronase treatment and matched fairly well previously published values. tau m(V) obtained from 3 x tau Na(V) were much larger than tau m(V) obtained from INa turn-on at the same potentials, resulting in a discontinuous distribution. Steady-state In (gNa/gNa max - gNa) vs. voltage was not linear and had a limiting logarithmic slope of 5.3 mV/e-fold gNa. Voltage step procedures that induce a second turn-on of INa during various stages of the deactivation (Na tail current) process reveal quasiexponential activation at early stages that becomes increasingly sigmoid as deactivation progresses. For moderate depolarizations, primary and secondary activation kinetics are superimposable. These data suggest that, although m3 can describe the shape of INa turn-on, it cannot quantitatively account for the kinetics of gNa after repolarization. Kinetic schemes for gNa in which substantial deactivation occurs by a unique pathway between conducting and resting states are shown to be unlikely. It appears that the rate-limiting step in linear kinetic models of activation may be between a terminal conducting state and the adjacent nonconducting intermediate.


2020 ◽  
Author(s):  
Sushil Pangeni ◽  
Jigneshkumar Dahyabhai Prajapati ◽  
Jayesh Arun Bafna ◽  
Nilam Mohamed ◽  
Werner M. Nau ◽  
...  

Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation across CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations provided an atomistic view on the permeation. It can be concluded that a concentration gradient of 1 M Ptm leads to a translocation rate of about 1 molecule per second and per channel.


2004 ◽  
Vol 123 (2) ◽  
pp. 135-154 ◽  
Author(s):  
Ulrike Laitko ◽  
Catherine E. Morris

A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore, that stretch-induced bilayer decompression facilitates an in-plane expansion of the protein in both activation and inactivation. Dynamic structural models of this class of channels will need to take into account the inherent mechanosensitivity of voltage-dependent gating.


1991 ◽  
Vol 66 (4) ◽  
pp. 1316-1328 ◽  
Author(s):  
J. R. Huguenard ◽  
D. A. Prince

1. Voltage-gated K currents were studied in relay neurons (RNs) acutely isolated from somatosensory (VB) thalamus of 7- to 14-day-old rats. In addition to a rapidly activated, transient outward current, IA, depolarizations activated slower K+ currents, which were isolated through the use of appropriate ionic and pharmacological conditions and measured via whole-cell voltage-clamp. 2. At least two slow components of outward current were observed, both of which were sensitive to changes in [K+]o, as expected for K conductances. The first, IK1, had an amplitude that was insensitive to holding potential and a relatively small conductance of 150 pS/pF. It was blocked by submillimolar levels of tetraethylammonium [TEA, 50%-inhibitory concentration (IC50 = 30 microM)] and 4-aminopyridine (4-AP, 40 microM). In the absence of intracellular Ca2+ buffering, the amplitude of IK1 was both larger and dependent on holding potential, as expected for a Ca(2+)-dependent current. Replacement of [Ca2+]o by Co2+ reduced IK1, although the addition of Cd2+ to Ca(2+)-containing solutions had no effect. 3. The second component, IK2, had a normalized conductance of 2.0 nS/pF and was blocked by millimolar concentrations of TEA (IC50 = 4 mM) but not by 4AP. The kinetics of IK2 were analogous to (but much slower than) those of IA in that both currents displayed voltage-dependent activation and voltage-independent inactivation. IK2 was not reduced by the addition of Cd2+ to Ca(2+)-containing solutions or by replacement of Ca2+ by Co2+. 4. IK2 had a more depolarized activation threshold than IA and attained peak amplitude with a latency of approximately 100 ms at room temperature. IK2 decay was nonexponential and could be described as the sum of two components with time constants (tau) near 1 and 10 s. 5. IK2 was one-half steady-state inactivated at a membrane potential of -63 mV, near the normal resting potential for these cells. The slope factor of the Boltzman function describing steady-state inactivation was 13 mV-1, which indicates that IK2 varies in availability across a broad voltage range between -100 and -20 mV. 6. Activation kinetics of IK2 were voltage dependent, with peak latency shifting from 300 to 50 ms in the voltage range -50 to +30 mV. Deinactivation and deactivation were also voltage dependent, in contrast to inactivation, which showed little dependence on membrane potential. Increase in temperature sped the kinetics of IK2, with temperature coefficient (Q10) values near 3 for activation and inactivation. Heating increased the amplitude of IK2 with a Q10 value near 2.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document