scholarly journals Action of External Divalent Ion Reduction on Sodium Movement in the Squid Giant Axon

1961 ◽  
Vol 45 (1) ◽  
pp. 93-103 ◽  
Author(s):  
William J. Adelman ◽  
John W. Moore

Voltage clamp measurements of the sodium potential have been made on the resting squid giant axon to study the effect of variations in external divalent ion concentration upon net sodium flux. From these measurements the intracellular sodium concentration and the net sodium inflow were calculated using the Nernst relation and constant activity coefficients. While an axon bathed in artificial sea water shows a slow increase in internal sodium concentration, the rate of sodium accumulation is increased about two times by reducing external calcium and magnesium concentrations to 0.1 times their normal values. The mean inward net sodium flux increases from a mean control value of 97 pmole/cm2 sec. to 186 pmole/cm2 sec. in low divalent solution. Associated with these effects of external divalent ion reduction are a marked decrease in action potential amplitude, little or no change in resting potential, and a shift along the voltage axis of the curve relating peak sodium conductance to membrane potential similar to that obtained by Frankenhaeuser and Hodgkin (1957). These results implicate divalent ions in long term (minutes to hours) sodium permeability.

1958 ◽  
Vol 41 (3) ◽  
pp. 529-542 ◽  
Author(s):  
John C. Dalton

The effects of varying external concentrations of normally occurring cations on membrane potentials in the lobster giant axon have been studied and compared with data presently available from the squid giant axon. A decrease in the external concentration of sodium ions causes a reversible reduction in the amplitude of the action potential and its rate of rise. No effect on the resting potential was detected. The changes are of the same order of magnitude, but greater than would be predicted for an ideal sodium electrode. Increase in external potassium causes a decrease in resting potential, and a decrease in potassium causes an increase in potential. The data so obtained are similar to those which have been reported for the squid giant axon, and cannot be exactly fitted to the Goldman constant field equation. Lowering external calcium below 25 mM causes a reduction in resting and action potentials, and the occasional occurrence of repetitive activity. The decrease in action potential is not solely attributable to a decrease in resting potential. Increase of external calcium from 25 to 50 mM causes no change in transmembrane potentials. Variations of external magnesium concentration between zero and 50 mM had no measurable effect on membrane potentials. These studies on membrane potentials do not indicate a clear choice between the use of sea water and Cole's perfusion solution as the better external medium for studies on lobster nerve.


1941 ◽  
Vol 24 (6) ◽  
pp. 771-788 ◽  
Author(s):  
Kenneth S. Cole ◽  
Richard F. Baker

Longitudinal alternating current impedance measurements have been made on the squid giant axon over the frequency range from 30 cycles per second to 200 kc. per second. Large sea water electrodes were used and the inter-electrode length was immersed in oil. The impedance at high frequency was approximately as predicted theoretically on the basis of the poorly conducting dielectric characteristics of the membrane previously determined. For the large majority of the axons, the impedance reached a maximum at a low frequency and the reactance then vanished at a frequency between 150 and 300 cycles per second. Below this frequency, the reactance was inductive, reaching a maximum and then approaching zero as the frequency was decreased. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane. The impedance characteristics of the membrane as calculated from the measured longitudinal impedance of the axon may be expressed by an equivalent membrane circuit containing inductance, capacity, and resistance. For a square centimeter of membrane the capacity of 1 µf with dielectric loss is shunted by the series combination of a resistance of 400 ohms and an inductance of one-fifth henry.


1978 ◽  
Vol 75 (1) ◽  
pp. 253-263
Author(s):  
J. E. TREHERNE ◽  
Y. PICHON

Reprint requests should be addressed to Dr Treherne. Sabella is a euryhaline osmoconformer which is killed by direct transfer to 50% sea water, but can adapt to this salinity with progressive dilution of the sea water. The giant axons were adapted to progressive dilution of the bathing medium (both in vivo and in vitro) and were able to function at hyposmotic dilutions (down to 50%) sufficient to induce conduction block in unadapted axons. Hyposmotic adaptation of the giant axon involves a decrease in intracellular potassium concentration which tends to maintain a relatively constant resting potential during adaptation despite the reduction in external potassium concentration. There is no appreciable change in the intracellular sodium concentration, but the relative sodium permeability of the active membrane increases during hyposmotic adaptation. This increase partially compensates for the reduction in sodium gradient across the axon membrane, during dilution of the bathing media, by increasing the overshoot of the action potentials recorded in hyposmotically adapted axons.


1962 ◽  
Vol 46 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Rita Guttman ◽  

The effect of temperature on the potential and current thresholds of the squid giant axon membrane was measured with gross external electrodes. A central segment of the axon, 0.8 mm long and in sea water, was isolated by flowing low conductance, isoosmotic sucrose solution on each side; both ends were depolarized in isoosmotic KCl. Measured biphasic square wave currents at five cycles per second were applied between one end of the nerve and the membrane of the central segment. The membrane potential was recorded between the central sea water and the other depolarized end. The recorded potentials are developed only across the membrane impedance. Threshold current values ranged from 3.2 µa at 267deg;C to 1 µa at 7.5°C. Threshold potential values ranged from 50 mv at 26°C to 6 mv at 7.5°C. The mean Q10 of threshold current was 2.3 (SD = 0.2), while the Q10 for threshold potentials was 2.0 (SD = 0.1).


1962 ◽  
Vol 45 (6) ◽  
pp. 1195-1216 ◽  
Author(s):  
Fred J. Julian ◽  
John W. Moore ◽  
David E. Goldman

A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting potential of an axon in the sucrose-gap arrangement is increased 20 to 60 mv over that recorded by a conventional micropipette electrode when the entire axon is bathed in sea water. A complete explanation for this effect has not been discovered. The relation between resting potential and external potassium and sodium ion concentrations shows that potassium carries most of the current in a depolarized axon in the sucrose-gap arrangement, but that near the resting potential other ions make significant contributions. Lowering the external chloride concentration decreases the resting potential. Varying the concentration of the sucrose solution has little effect. A study of the impedance changes associated with the action potential shows that the membrane resistance decreases to a minimum at the peak of the spike and returns to near its initial value before repolarization is complete (a normal lobster giant axon action potential does not have an undershoot). Action potentials recorded simultaneously by the sucrose-gap technique and by micropipette electrodes are practically superposable.


1967 ◽  
Vol 50 (3) ◽  
pp. 533-549 ◽  
Author(s):  
R. A. Sjodin ◽  
L. J. Mullins

The efflux of labeled and unlabeled potassium ions from the squid giant axon has been measured under a variety of experimental conditions. Axons soaked in sea water containing 42K ions lost radioactivity when placed in inactive sea water according to kinetics which indicate the presence of at least two cellular compartments. A rapidly equilibrating superficial compartment, probably the Schwann cell, was observed to elevate the specific activity of 42K lost from such axons to K-free sea water for a period of hours. The extra radioactive potassium loss from such axons during stimulation, however, was shown to have a specific activity identical within error to that measured in the axoplasm at the end of the experiment. The same was shown for the extra potassium loss occurring during passage of a steady depolarizing current. Axons placed in sea water with an elevated potassium ion concentration (50 mM) showed an increased potassium efflux that was in general agreement with the accompanying increase in membrane conductance. The efflux of potassium ions observed in 50 mM K sea water at different membrane potentials did not support the theory that the potassium fluxes obey the independence principle.


1957 ◽  
Vol 40 (6) ◽  
pp. 859-885 ◽  
Author(s):  
Ichiji Tasaki ◽  
Susumu Hagiwara

1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is practically normal (Fig. 4). Near the end of the action potential, there is an apparent increase in the membrane resistance (Fig. 5D and Fig. 6, right). 3. The phenomenon of abolition of action potentials was demonstrated in the squid giant axon treated with TEA (Fig. 7). Following an action potential abolished in its early phase, there is no refractoriness (Fig. 8). 4. By the method of voltage clamp, the voltage-current relation was investigated on normal squid axons as well as on axons treated with TEA (Figs. 9 and 10). 5. The presence of stable states of the membrane was demonstrated by clamping the membrane potential with two voltage steps (Fig. 11). Experimental evidence was presented showing that, in an "unstable" state, the membrane conductance is not uniquely determined by the membrane potential. 6. The effect of low sodium water was investigated in the axon treated with TEA (Fig. 12). 7. The similarity between the action potential of a squid axon under TEA and that of the vertebrate cardiac muscle was stressed. The experimental results were interpreted as supporting the view that there are two stable states in the membrane. Initiation and abolition of an action potential were explained as transitions between the two states.


1993 ◽  
Vol 115 (1) ◽  
pp. 13-22 ◽  
Author(s):  
J. A. Galbraith ◽  
L. E. Thibault ◽  
D. R. Matteson

There is a limited amount of information available on the mechanical and functional response of the nervous system to loading. While deformation of cerebral, spinal, or peripheral nerve tissue can have particularly severe consequences, most research in this area has concentrated on either demonstrating in-vivo functional changes and disclosing the effected anatomical pathways, or describing material deformations of the composite structure. Although such studies have successfully produced repeatable traumas, they have not addressed the mechanisms of these mechanically induced injuries. Therefore, a single cell model is required in order to gain further understanding of this complex phenomena. An isolated squid giant axon was subjected to controlled uniaxial loading and its mechanical and physiological responses were monitored with an instrument specifically designed for these experiments. These results determined that the mechanical properties of the isolated axon are similar to those of other soft tissues, and include features such as a nonlinear load-deflection curve and a hysteresis loop upon unloading. The mechanical response was modeled with the quasi-linear viscoelastic theory (Fung, 1972). The physiological response of the axon to quasi-static loading was a small reversible hyperpolarization; however, as the rate of loading was increased, the axon depolarized and the magnitude and the time needed to recover to the original resting potential increased in a nonlinear fashion. At elongations greater than twenty percent an irreversible injury occurs and the membrane potential does not completely recover to baseline.


1953 ◽  
Vol 37 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Abraham M. Shanes ◽  
Harry Grundfest ◽  
Walter Freygang

The increase in conductance, which accompanies the spike in the presence of sea water, is followed by a decrease to below the resting level, here designated as the "initial after-impedance," which lasts 3 msec. and is 3 per cent as great as the increase. Treatment with cevadine usually obliterates the latter but leaves the former essentially unaltered. In addition, the alkaloid gives rise to periodic conductance increases followed by a prolonged, exponentially decaying elevated conductance (the "negativity after-impedance") which correspond closely to potential oscillations and to the negative after-potential. These are also only a few per cent of the major conductance change. Veratridine causes a conductance increase which lasts longer and which also conforms closely with earlier after-potential results. Preliminary calculations indicate that the negativity after-impedance and the negative after-potential may be due to the subsidence of an elevated chloride permeability. However, no satisfactory explanation is available for the initial after-impedance or for the temporal course of the conductance changes associated with oscillations in membrane potential.


1960 ◽  
Vol 43 (5) ◽  
pp. 971-980 ◽  
Author(s):  
Kenneth S. Cole ◽  
John W. Moore

The potential differences across the squid giant axon membrane, as measured with a series of microcapillary electrodes filled with concentrations of KCl from 0.03 to 3.0 M or sea water, are consistent with a constant membrane potential and the liquid junction potentials calculated by the Henderson equation. The best value for the mobility of an organic univalent ion, such as isethionate, leads to a probably low, but not impossible, axoplasm specific resistance of 1.2 times sea water and to a liquid junction correction of 4 mv. for microelectrodes filled with 3 M KCl. The errors caused by the assumptions of proportional mixing, unity activity coefficients, and a negligible internal fixed charge cannot be estimated but the results suggest that the cumulative effect of them may not be serious.


Sign in / Sign up

Export Citation Format

Share Document