scholarly journals Tracer and Nontracer Potassium Fluxes in Squid Giant Axons and the Effects of Changes in External Potassium Concentration and Membrane Potential

1967 ◽  
Vol 50 (3) ◽  
pp. 533-549 ◽  
Author(s):  
R. A. Sjodin ◽  
L. J. Mullins

The efflux of labeled and unlabeled potassium ions from the squid giant axon has been measured under a variety of experimental conditions. Axons soaked in sea water containing 42K ions lost radioactivity when placed in inactive sea water according to kinetics which indicate the presence of at least two cellular compartments. A rapidly equilibrating superficial compartment, probably the Schwann cell, was observed to elevate the specific activity of 42K lost from such axons to K-free sea water for a period of hours. The extra radioactive potassium loss from such axons during stimulation, however, was shown to have a specific activity identical within error to that measured in the axoplasm at the end of the experiment. The same was shown for the extra potassium loss occurring during passage of a steady depolarizing current. Axons placed in sea water with an elevated potassium ion concentration (50 mM) showed an increased potassium efflux that was in general agreement with the accompanying increase in membrane conductance. The efflux of potassium ions observed in 50 mM K sea water at different membrane potentials did not support the theory that the potassium fluxes obey the independence principle.

1985 ◽  
Vol 54 (2) ◽  
pp. 449-461 ◽  
Author(s):  
J. R. Huguenard ◽  
K. L. Zbicz ◽  
D. V. Lewis ◽  
G. J. Evans ◽  
W. A. Wilson

A slow outward current associated with spike frequency adaptation has been studied in the giant Aplysia neurons R2 and LP1. The current was observed during 60-s voltage clamp commands to potentials just below spike threshold. The slow outward current shows a marked voltage dependence at membrane potential less negative than -40 mV. The slow outward current is associated with increased membrane conductance. The K+ sensitivity of the slow outward current was studied by varying the extracellular K+ concentration and also by measuring potassium efflux with a K+-sensitive electrode. Both procedures indicated that the slow outward current was K+ dependent. Tail currents following the activation of the slow outward current were examined. They were shown to have a similar potassium sensitivity as the slow outward current and had a reversal potential near the potassium equilibrium potential for these cells. The sensitivity of the slow outward current to known blockers of K+ currents, tetraethylammonium and 4-aminopyridine, was tested. The sensitivity was much less than that reported for other K+ currents. The sensitivity of the slow outward current to changes of the extracellular concentrations of Na+ and Cl- ions, as well as electrogenic pump inhibitors, was tested. The results indicate that the slow outward current is much less sensitive to these changes than to the manipulations of the extracellular K+ ion concentration. We tested the sensitivity of this current to manipulations of intracellular and extracellular Ca2+ ion concentrations. We found that the current persisted at a slightly reduced level in the absence of extracellular calcium or in the presence of calcium blocking agents, cobalt and lanthanum. Intracellular injection of the calcium chelator EGTA at a concentration sufficient to block the Ca2+-dependent K+ current, seen after a brief (1.4-s) burst of action potentials, had minimal effects on the slow outward current. Procedures thought to increase intracellular Ca2+ were tested. We found that exposure of the cell to solutions containing elevated Ca2+ concentrations for prolonged periods increased the slow outward current. Also, treatment with drugs thought to elevate intracellular Ca2+ increased the slow outward current. In conclusion, the slow outward current results from an increased K+ conductance.(ABSTRACT TRUNCATED AT 400 WORDS)


1961 ◽  
Vol 45 (1) ◽  
pp. 93-103 ◽  
Author(s):  
William J. Adelman ◽  
John W. Moore

Voltage clamp measurements of the sodium potential have been made on the resting squid giant axon to study the effect of variations in external divalent ion concentration upon net sodium flux. From these measurements the intracellular sodium concentration and the net sodium inflow were calculated using the Nernst relation and constant activity coefficients. While an axon bathed in artificial sea water shows a slow increase in internal sodium concentration, the rate of sodium accumulation is increased about two times by reducing external calcium and magnesium concentrations to 0.1 times their normal values. The mean inward net sodium flux increases from a mean control value of 97 pmole/cm2 sec. to 186 pmole/cm2 sec. in low divalent solution. Associated with these effects of external divalent ion reduction are a marked decrease in action potential amplitude, little or no change in resting potential, and a shift along the voltage axis of the curve relating peak sodium conductance to membrane potential similar to that obtained by Frankenhaeuser and Hodgkin (1957). These results implicate divalent ions in long term (minutes to hours) sodium permeability.


1978 ◽  
Vol 235 (1) ◽  
pp. C55-C62 ◽  
Author(s):  
P. de Weer ◽  
D. Geduldig

The effect of the cardiotonic aglycone, strophanthidin, on sodium and potassium efflux, membrane potential, membrane conductance, potassium permeability, and the shape of the action potential of the giant axon of the squid, Loligo pealei, was examined. Strophanthidin depolarized the membrane to an extent determined by the intracellular sodium concentration, except in axons pretreated with cyanide, in which the effect is abolished. Cyanide itself hyperpolarized the axon membrane. Axons treated with strophanthidin appear to be better potassium electrodes, but this observation is fully accounted for by the stimulating effect of [K]o on an electrogenic sodium pump. The increase in potassium efflux produced by strophanthidin is also well accounted for by the observed membrane depolarization and the known dependence of potassium permeability on membrane potential (e-fold increase in efflux per 6.4 mV depolarization). Strophanthidin has no demonstrable effect on membrane conductance apart from that due to the observed depolarization. These findings support the view that cardiotonic steroids, at least in nerve, are specific inhibitors of the sodium pump, devoid of effects on permeability that might interfere with the study of electrogenic pumping. The alteration in the shape of the action potential after exposure to strophanthidin (deepening of the "underswing") suggests that the strophanthidin-induced membrane depolarization results from the inhibition of a true electrogenic pump, and not from ion redistributions in the vicinity of the membrane.


1959 ◽  
Vol 42 (4) ◽  
pp. 793-802 ◽  
Author(s):  
A. M. Shanes ◽  
W. H. Freygang ◽  
H. Grundfest ◽  
E. Amatniek

Changes in spike configuration and in the inward and outward currents of voltage-clamped axons agree in indicating that the increases in permeability to sodium and potassium ions during activity are depressed by procaine and cocaine and augmented by calcium. At low levels of depolarization, the effect of the multivalent ion is similar to that of the local anesthetics, in keeping with their similar effects on the threshold of excitability. The reduction of membrane conductance at rest requires a higher concentration of the drugs than that needed to affect the increase in permeability with activity.


1970 ◽  
Vol 24 (1) ◽  
pp. 38-41
Author(s):  
Taslima Taher Lina ◽  
Mohammad Ilias

The in vivo production of soluble inorganic pyrophosphatases (PPases) was investigated in two strains, namely, Vibrio cholerae EM 004 (environmental strain) and Vibrio cholerae O1 757 (ATCC strain). V. cholerae is known to contain both family I and family II PPase coding sequences. The production of family I and family II PPases were determined by measuring the enzyme activity in cell extracts. The effects of pH, temperature, salinity of the growth medium on the production of soluble PPases were studied. In case of family I PPase, V. cholerae EM 004 gave the highest specific activity at pH 9.0, with 2% NaCl + 0.011% NaF and at 37°C. The strain V. cholerae O1 757 gave the highest specific activity at pH 9.0, with media containing 0% NaCl and at 37°C. On the other hand, under all the conditions family II PPase did not give any significant specific activity, suggesting that the family II PPase was not produced in vivo in either strains of V. cholerae under different experimental conditions. Keywords: Vibrio cholerae, Pyrophosphatases (PPases), Specific activityDOI: http://dx.doi.org/10.3329/bjm.v24i1.1235 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 38-41


Nature ◽  
1923 ◽  
Vol 111 (2778) ◽  
pp. 132-133
Author(s):  
J. J.

Author(s):  
Marta Stahl ◽  
Ivan Brandslund

AbstractBlood specimens from primary care centres are normally transported to central laboratories by mail. This necessitates centrifugation and separation, especially since the potassium ion concentration in whole blood changes during storage at ambient temperature. Thus, because of the growing awareness of and concern for pre-analytical contributions to the uncertainty of measurements, we investigated 27 components and their stability under controlled temperature conditions from 17 to 23°C. We found that storage of whole blood can be prolonged by up to 8–12h for all components examined, including potassium ions, when stored at 20±0.2°C. We conclude that this opens the possibility for establishing a pick-up service, by which whole blood specimens stored at 20–21°C can be collected at the doctor's office, making centrifugation, separation and mailing superfluous. In addition, the turn-around time from sample drawing to reporting the analytical result would be shortened. After investments in thermostatted boxes and logistics, the system could reduce costs for transporting blood samples from general practice centres to central laboratories.


2016 ◽  
Vol 76 (3) ◽  
pp. 577-582 ◽  
Author(s):  
L. S. M. Masuda ◽  
A. Enrich-Prast

Abstract This research evaluated the effect of flooding on the microphytobenthos community structure in a microbial mat from a tropical salt flat. Field samples were collected during four consecutive days: on the first three days the salt flat was dry, on the fourth day it was flooded by rain. In order to evaluate the community maintained in flood conditions, samples from this area were collected and kept in the laboratory for 10 days with sea water. The results of total abundance of microphytobenthos varied from 4.2 × 108 to 2.9 × 109 organisms L–1, total density increased one order of magnitude under the effect of water for both situations of precipitation in the salt flat and in experimental conditions, an increase due to the high abundance of Microcoleus spp. Shannon index (H’) was higher during the desiccation period. Our data suggest that changes in the abundance of organisms were due to the effect of water. The dominance of the most abundant taxa remained the same under conditions of desiccation and influence of water, and there is probably a consortium of microorganisms in the microbial mat that helps to maintain these dominances.


Sign in / Sign up

Export Citation Format

Share Document