scholarly journals Two Components of the Cardiac Action Potential

1969 ◽  
Vol 54 (5) ◽  
pp. 607-635 ◽  
Author(s):  
Antonio Paes de Carvalho ◽  
Brian Francis Hoffman ◽  
Marilene de Paula Carvalho

Transmembrane potentials recorded from the rabbit heart in vitro were displayed as voltage against time (V, t display), and dV/dt against voltage (V, V or phase-plane display). Acetylcholine was applied to the recording site by means of a hydraulic system. Results showed that (a) differences in time course of action potential upstroke can be explained in terms of the relative magnitude of fast and slow phases of depolarization; (b) acetylcholine is capable of depressing the slow phase of depolarization as well as the plateau of the action potential; and (c) action potentials from nodal (SA and AV) cells seem to lack the initial fast phase. These results were construed to support a two-component hypothesis for cardiac electrogenesis. The hypothesis states that cardiac action potentials are composed of two distinct and physiologically separable "components" which result from discrete mechanisms. An initial fast component is a sodium spike similar to that of squid nerve. The slow component, which accounts for both a slow depolarization during phase 0 and the plateau, probably is dependent on the properties of a slow inward current having a positive equilibrium potential, coupled to a decrease in the resting potassium conductance. According to the hypothesis, SA and AV nodal action potentials are due entirely or almost entirely to the slow component and can therefore be expected to exhibit unique electrophysiological and pharmacological properties.

1978 ◽  
Vol 71 (1) ◽  
pp. 47-67 ◽  
Author(s):  
D J Miller ◽  
A Mörchen

Resting and action potentials were recorded from superfused strips of frog ventricle. Reducing the bathing calcium concentration ([Ca2+]0) with or without ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA) prolongs the action potential (AP). The change in the duration of the AP extends over many minutes, but is rapidly reversed by restoring calcium ions. Other changes (e.g., in resting potential and overshoot) are, however, only more slowly reversed. Reducing [Ca2+]0 with 0.2, 2, or 5 mM EGTA produces progressively greater prolongation of AP; maximum values were well in excess of 1 min. This prolongation can be reversed by other divalent cations in EGTA (Mg2+, Sr2+) or Ca-free (Mn2+) solutions, or by acetylcholine. Barium ions increase AP duration in keeping with their known effect on potassium conductance. D600, which blocks the slow inward current in cardiac muscle, is without effect on the action potentials recorded in EGTA solutions, or on the time course and extent of the recovery to normal duration upon restoring calcium ions. It is concluded that divalent cations exert an influence on membrane potassium conductance extracellularly in frog heart. The cell membrane does not become excessively "leaky" in EGTA solutions.


2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


1981 ◽  
Vol 90 (1) ◽  
pp. 187-200 ◽  
Author(s):  
W T Chen

Retraction of the taut, trailing portion of a moving chick heart fibroblast in vitro is an abrupt dynamic process. Upon retraction, the fibroblast tail always ruptures, leaving a small amount of itself attached to the substratum by focal contacts. Time-lapse cinemicrography shows that retraction produces a sudden, massive movement of both surface and cytoplasmic material toward a cluster of focal contacts near the main body of the cell. The appearance of folds on the upper cell surface at this time and the absence of endocytotic vesicles are consistent with this forward movement. Retraction of the trailing edge, either occurring naturally or produced artificially with a microneedle, consists of an initial fast component followed and overlapped by a slow component. Upon artificial detachment in the presence of iodoacetate, dinitrophenol, and sodium fluoride, and at 4 degrees C, the slow component is strongly inhibited and the fast one only slightly inhibited. Moreover of the bundles of microfilaments oriented parallel to the long axis of the tail seen in TEM. Most of the birefringence is lost during the fast phase and the rest during the slow phase of retraction. Concurrently, the bundles of microfilaments disappear during the fast phase of retraction and are replaced by a microfilament meshwork. All of these results are consistent with the hypothesis that the initial fast component of retraction is a passive elastic recoil, associated with the oriented bundles of microfilaments, and that the slow component of retraction is an active contraction, associated with a meshwork of microfilaments.


2001 ◽  
Vol 86 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Muthukrishnan Renganathan ◽  
Theodore R. Cummins ◽  
Stephen G. Waxman

C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Nav1.8 (+/+) and (−/−) small DRG neurons maintained for 2–8 h in vitro to examine the role of sodium channel Nav1.8 (α-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Nav1.8 (+/+) and (−/−) DRG neurons, there were significant differences in action potential electrogenesis. Most Nav1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Nav1.8 (−/−) neurons produce smaller graded responses. The peak of the response was significantly reduced in Nav1.8 (−/−) neurons [31.5 ± 2.2 (SE) mV] compared with Nav1.8 (+/+) neurons (55.0 ± 4.3 mV). The maximum rise slope was 84.7 ± 11.2 mV/ms in Nav1.8 (+/+) neurons, significantly faster than in Nav1.8 (−/−) neurons where it was 47.2 ± 1.3 mV/ms. Calculations based on the action potential overshoot in Nav1.8 (+/+) and (−/−) neurons, following blockade of Ca2+ currents, indicate that Nav1.8 contributes a substantial fraction (80–90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na+ channels can produce all-or-none action potentials in some Nav1.8 (−/−) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Nav1.8 (−/−) neurons is more sensitive to membrane depolarization than in Nav1.8 (+/+) neurons, and, in the absence of Nav1.8, is attenuated with even modest depolarization. These observations indicate that Nav1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons.


1994 ◽  
Vol 267 (3) ◽  
pp. H1157-H1166 ◽  
Author(s):  
G. M. Wahler ◽  
S. J. Dollinger ◽  
J. M. Smith ◽  
K. L. Flemal

The rat ventricular action potential shortens after birth. The contribution of increases in the transient outward current (Ito) to postnatal action potential shortening was assessed by measuring Ito in isolated cells and by determining the effect of 2 mM 4-aminopyridine (4-AP) on the action potentials of papillary muscles. 4-AP had no effect on 1-day action potential duration at 25% repolarization (APD25), and 1-day cells had little Ito. In 8- to 10-day muscles, 4-AP caused a small, but significant, increase in APD25. Ito increased slightly between day 1 and days 8-10, but this increase was not significant. Most of the increase in Ito (79%) and in the response to 4-AP (64%) occurred between days 8-10 and adult; however, approximately 75% of the APD25 shortening took place by days 8-10. Thus, while Ito may contribute to repolarization in late neonatal and adult cells, the different time courses of action potential shortening and increases in Ito suggest that changes in Ito are unlikely to be responsible for most of the postnatal action potential shortening.


1988 ◽  
Vol 255 (5) ◽  
pp. H992-H999 ◽  
Author(s):  
R. Mohabir ◽  
G. R. Ferrier

The inducibility of slow-response automaticity was assessed during ischemic conditions and reperfusion by application of extracellular current. Isolated canine Purkinje fibers were depolarized to membrane potentials less than -65 mV to elicit depolarization-induced automaticity (DIA). Ischemic conditions increased the cycle length of DIA and, in some tissues, prevented sustained DIA or completely abolished DIA. The magnitude of depolarization required to elicit DIA also increased. Inhibition of DIA occurred at a time when action potential plateaus were abbreviated. The effect of reperfusion on DIA was biphasic. Initial reappearance of DIA was followed by inhibition and reduction of the membrane potential range over which DIA could be elicited. Plateaus of action potentials initiated at high membrane potential were abbreviated at this time. DIA returned again as reperfusion effects dissipated. Phasic changes in the inducibility of DIA may represent changes in availability of the slow inward current and may regulate the timing and types of arrhythmic activity occurring with ischemia and reperfusion.


1986 ◽  
Vol 250 (1) ◽  
pp. C40-C46 ◽  
Author(s):  
B. A. Kotsias ◽  
S. Muchnik ◽  
C. A. Obejero Paz

We have studied the effects of Co2+ (5 mM), low-Ca2+ solution [0 added CaCl2, 5 mM ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid, 3 mM MgCl2 Ringer], and verapamil (0.1 mM) on mechanical and electrical properties of rat soleus muscle in vitro at 34 degrees C. Muscle fibers had normal resting potentials in Co2+ and verapamil solutions. Low-Ca2+ solution produces a depolarization of approximately 4 mV. The action potentials are smaller and have a slower time course when exposed to test solutions. Iterative generation of action potentials in the presence of Co2+ and low-Ca2+ solution is not modified. In the presence of Co2+ or low-Ca2+ solution, the mechanical output, twitch and tetanus tensions, and caffeine contracture are reduced significantly. Verapamil produces a decrease in the twitch and tetanic tensions but does not modify the caffeine contracture tension. The effect of verapamil on the twitch becomes more manifest when the muscle is stimulated at 3-5 Hz. We suggest that changes in the action potential characteristics or the inhibition of a Ca2+ current are responsible for the mechanical changes observed in the presence of the drugs.


1956 ◽  
Vol 186 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Brian F. Hoffman ◽  
E. E. Suckling

The effects of changes in the extracellular concentrations of Ca, K and Mg on the transmembrane resting and action potentials of single fibers of the auricle, ventricle and specialized conducting system of the dog heart have been studied by means of intracellular microelectrodes. With respect to Ca, the three tissues exhibit quite different sensitivities. Changes in concentration of this ion alter the time course of the action potential recorded from auricle and ventricle but have little effect on the action potential configuration of the Purkinje fiber. In the latter tissue, on the other hand, pacemaker activity is most strongly enhanced by Ca depletion and excitability is lost at Ca concentrations permitting normal propagation in papillary muscle. The effect of K on the resting transmembrane potential is dependent on the simultaneous Ca concentration. The interrelationship is such that the depolarizing effect of high K is decreased by elevated Ca and the depolarization produced by low K is diminished by low levels of Ca. Changes in the concentration of Mg have little effect on the transmembrane potentials of cardiac muscle unless the level of Ca is low. Under this condition a simultaneous decrease in Mg gives rise to a marked prolongation of the action potential duration of both auricle and ventricle. Some evidence for the basic similarity of the processes underlying repolarization in these three tissues is presented and it is thought the normally encountered differences in their action potentials may be related to the sensitivity of each tissue to extracellular Ca.


1993 ◽  
Vol 70 (5) ◽  
pp. 1874-1884 ◽  
Author(s):  
K. Morita ◽  
G. David ◽  
J. N. Barrett ◽  
E. F. Barrett

1. The hyperpolarization that follows tetanic stimulation was recorded intra-axonally from the internodal region of intramuscular myelinated motor axons. 2. The peak amplitude of the posttetanic hyperpolarization (PTH) that followed stimulation at 20-100 Hz for < or = 35 s increased with increasing train duration, reaching a maximum of 22 mV. PTH decayed over a time course that increased from tens to hundreds of seconds with increasing train duration. For a given frequency of stimulation the time integral of PTH was proportional to the number of stimuli in the train, averaging 3-4 mV.s per action potential. 3. Ouabain (0.1-1 mM) and cyanide (1 mM) depolarized the resting potential and abolished PTH. Tetanic stimulation in ouabain was followed by a slowly decaying depolarization (probably due to extra-axonal K+ accumulation) whose magnitude and duration increased as the duration of the train increased. 4. Axonal input resistance showed no consistent change during PTH in normal solution but increased during PTH in the presence of 3 mM Cs+ (which blocks axonal inward rectifier currents). 5. PTH was abolished when bath Na+ was replaced by Li+ or choline. PTH persisted after removal of bath Ca2+ and addition of 2 mM Mn2+. 6. Removal of bath K+ abolished the PTH recorded after brief stimulus trains and greatly reduced the duration of PTH recorded after longer stimulus trains. 7. A brief application of 10 mM K+, which normally depolarizes axons, produced a ouabain-sensitive hyperpolarization in axons bathed in K(+)-free solution. 8. These observations suggest that in these myelinated axons PTH is produced mainly by activation of an electrogenic Na(+)-K(+)-ATPase, rather than by changes in K+ permeability or transmembrane [K+] gradients. This conclusion is supported by calculations showing agreement between estimates of Na+ efflux/impulse based on PTH measurements and estimates of Na+ influx/impulse based on nodal voltage-clamp measurements. Pump activity also appears to contribute to the resting potential. 9. The stimulus intensity required to initiate a propagating action potential increased during PTH but decreased during the posttetanic depolarization recorded in ouabain. Thus changes in axonal excitability after tetanic stimulation correlate with changes in the posttetanic membrane potential. 10. Action potentials that propagated during PTH had a larger peak amplitude and were followed by a larger and longer depolarizing afterpotential than action potentials elicited at the resting potential. This enhancement of the depolarizing afterpotential is consistent with previous reports of an increased superexcitable period after action potentials evoked during PTH.


1987 ◽  
Vol 57 (5) ◽  
pp. 1314-1324 ◽  
Author(s):  
M. Yoshimura ◽  
C. Polosa ◽  
S. Nishi

Sympathetic preganglionic neurons of the intermediolateral nucleus were identified by antidromic stimulation in the slice of the T2 or T3 segment of the cat spinal cord. In normal Krebs solution, the action potential of these neurons had a shoulder on the repolarization phase and was followed by a long-lasting afterhyperpolarization (AHP). The AHP had a fast and a slow component. Superfusion of the slice with noradrenaline (NA), 10-50 microM, resulted in depression of the shoulder on the repolarization phase of the action potential, in the appearance of an afterdepolarization (ADP), which was absent in control conditions, and in depression of the slow component of the AHP. These effects were present whether the membrane potential of the sympathetic preganglionic neurons was decreased, increased, or not changed by NA. A typical ADP had time to peak of 50 ms and decay time of 200-500 ms; the amplitude was variable and large ADPs could be suprathreshold, causing repetitive firing. The amplitude and duration of the ADP increased with NA concentration. The appearance of the ADP seemed to be independent of the depressant effect of NA on the slow AHP. The ADP was associated with a decrease in neuron input resistance and was voltage dependent, being depressed in nonlinear fashion by membrane hyperpolarization. The ADP decreased in amplitude or disappeared within a range of membrane potentials from -70 to -90 mV. The ADP was reversibly suppressed by the Ca-channel blocker cobalt (2 mM), by low Ca Krebs (0.25 mM), and by iontophoretic injection of ethyleneglycol-bis(B-aminoethyl-ether)-N,N'-tetraacetic acid into the cell. Increasing Ca concentration from 2.5 to 10.0 mM had no effect. The ADP was unaffected by tetrodotoxin, at a concentration blocking the Na spike, but was suppressed in Na-free medium, even when the Ca spike was prolonged by tetraethylammonium 20 mM. Changes in external K concentration from 3.6 to 2.5 or 10.0 mM did not change the ADP. Increasing intracellular Cl concentration or decreasing extracellular Cl concentration had no effect on the ADP. It is concluded that the ADP, evoked by NA, is due to an increase in membrane conductance involving Na and Ca ions, possibly a Ca-activated Na conductance. The ADP provides a mechanism with which NA may modulate sympathetic preganglionic neuron responsiveness to excitatory synaptic inputs.


Sign in / Sign up

Export Citation Format

Share Document