scholarly journals Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons

1974 ◽  
Vol 63 (6) ◽  
pp. 675-689 ◽  
Author(s):  
Ted Begenisich ◽  
Carl Lynch

We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calcium movement with the action potential triggers sodium inactivation or potassium activation. Low internal zinc concentrations (∼1 mM) selectively and reversibly slow the kinetics of the potassium current and reduce peak sodium current by about 40% with little effect on the voltage dependence of the ionic currents. Higher concentrations (∼10 mM) produce a considerable (ca. 90%) nonspecific reversible reduction of the ionic currents. Large hyperpolarizing conditioning pulses reduce the zinc effect. Internal zinc also reversibly depolarizes the axon by 20–30 mV. The effects of internal cobalt, cadmium, and nickel are qualitatively similar to those of zinc: only calcium among the cations tested is without effect.

1977 ◽  
Vol 69 (3) ◽  
pp. 293-323 ◽  
Author(s):  
J Z Yeh ◽  
T Narahashi

The interaction of pancuronium with sodium channels was investigated in squid axons. Sodium current turns on normally but turns off more quickly than the control with pancuronium 0.1-1mM present internally; The sodium tail current associated with repolarization exhibits an initial hook and then decays more slowly than the control. Pancuronium induces inactivation after the sodium inactivation has been removed by internal perfusion of pronase. Such pancuronium-induced sodium inactivation follows a single exponential time course, suggesting first order kinetics which represents the interaction of the pancuronium molecule with the open sodium channel. The rate constant of association k with the binding site is independent of the membrane potential ranging from 0 to 80 mV, but increases with increasing internal concentration of pancuronium. However, the rate constant of dissociation l is independent of internal concentration of pancuronium but decreases with increasing the membrane potential. The voltage dependence of l is not affected by changine external sodium concentration, suggesting a current-independent conductance block, The steady-state block depends on the membrane potential, being more pronounced with increasing depolarization, and is accounted for in terms of the voltage dependence of l. A kinetic model, based on the experimental observations and the assumption on binding kinetics of pancuronium with the open sodium channel, successfully simulates many features of sodium current in the presence of pancuronium.


Like the axolemma of the giant nerve fibre of the squid, the nodal membrane of frog myelinated nerve fibres after blocking transmembrane ionic currents exhibits asymmetrical displacement currents during and after hyperpolarizing and depolarizing voltage clamp pulses of equal size. The steady-state distribution of charges as a function of membrane potential is consistent with Boltzmann’s law (midpoint potential —33.7 mV; saturation value 17200 charges/(μm 2 ). The time course of the asymmetry current and the voltage dependence of its time constant are consistent with the notion that due to a sudden change in membrane potential the charges undergo a first order transition between two configurations. Size and voltage dependence of the time constant are similar to those of the activation of the sodium conductance assuming m 2 h kinetics, The results suggest the presence of ten times more sodium channels (5000/μm2) in the node of Ranvier than in the squid giant axon with similar sodium conductance per channel (2-3 pS),


1986 ◽  
Vol 88 (6) ◽  
pp. 777-798 ◽  
Author(s):  
J R Hume ◽  
W Giles ◽  
K Robinson ◽  
E F Shibata ◽  
R D Nathan ◽  
...  

Individual myocytes were isolated from bullfrog atrium by enzymatic and mechanical dispersion, and a one-microelectrode voltage clamp was used to record the slow outward K+ currents. In normal [K+]o (2.5 mM), the slow outward current tails reverse between -95 and -100 mV. This finding, and the observed 51-mV shift of Erev/10-fold change in [K+]o, strongly suggest that the "delayed rectifier" in bullfrog atrial cells is a K+ current. This current, IK, plays an important role in initiating repolarization, and it is distinct from the quasi-instantaneous, inwardly rectifying background current, IK. In atrial cells, IK does not exhibit inactivation, and very long depolarizing clamp steps (20 s) can be applied without producing extracellular K+ accumulation. The possibility of [K+]o accumulation contributing to these slow outward current changes was assessed by (a) comparing reversal potentials measured after short (2 s) and very long (15 s) activating prepulses, and (b) studying the kinetics of IK at various holding potentials and after systematically altering [K+]o. In the absence of [K+]o accumulation, the steady state activation curve (n infinity) and fully activated current-voltage (I-V) relation can be obtained directly. The threshold of the n infinity curve is near -50 mV, and it approaches a maximum at +20 mV; the half-activation point is approximately -16 mV. The fully activated I-V curve of IK is approximately linear in the range -40 to +30 mV. Semilog plots of the current tails show that each tail is a single-exponential function, which suggests that only one Hodgkin-Huxley conductance underlies this slow outward current. Quantitative analysis of the time course of onset of IK and of the corresponding envelope of tails demonstrate that the activation variable, n, must be raised to the second power to fit the sigmoid onset accurately. The voltage dependence of the kinetics of IK was studied by recording and curve-fitting activating and deactivating (tail) currents. The resulting 1/tau n curve is U-shaped and somewhat asymmetric; IK exhibits strong voltage dependence in the diastolic range of potentials. Changes in the [Ca2+]o in the superfusing Ringer's, and/or addition of La3+ to block the transmembrane Ca2+ current, show that the time course and magnitude of IK are not significantly modulated by transmembrane Ca2+ movements, i.e., by ICa. These experimentally measured voltage- and time-dependent descriptors of IK strongly suggest an important functional role for IK in atrial tissue: it initiates repolarization and can be an important determinant of rate-induced changes in action potential duration.


1998 ◽  
Vol 112 (4) ◽  
pp. 433-446 ◽  
Author(s):  
Han Choe ◽  
Henry Sackin ◽  
Lawrence G. Palmer

Permeation, gating, and their interrelationship in an inwardly rectifying potassium (K+) channel, ROMK2, were studied using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode. The gating kinetics of ROMK2 were well described by a model having one open and two closed states. One closed state was short lived (∼1 ms) and the other was longer lived (∼40 ms) and less frequent (∼1%). The long closed state was abolished by EDTA, suggesting that it was due to block by divalent cations. These closures exhibit a biphasic voltage dependence, implying that the divalent blockers can permeate the channel. The short closures had a similar biphasic voltage dependence, suggesting that they could be due to block by monovalent, permeating cations. The rate of entering the short closed state varied with the K+ concentration and was proportional to current amplitude, suggesting that permeating K+ ions may be related to the short closures. To explain the results, we propose a variable intrapore energy well model in which a shallow well may change into a deep one, resulting in a normally permeant K+ ion becoming a blocker of its own channel.


2004 ◽  
Vol 92 (5) ◽  
pp. 2820-2830 ◽  
Author(s):  
Yingxin Lin ◽  
Stefan I. McDonough ◽  
Diane Lipscombe

The CaV2.2 gene encodes the functional core of the N-type calcium channel. This gene has the potential to generate thousands of CaV2.2 splice isoforms with different properties. However, the functional significance of most sites of alternative splicing is not established. The IVS3-IVS4 region contains an alternative splice site that is conserved evolutionarily among CaVα1 genes from Drosophila to human. In CaV2.2, inclusion of exon 31a in the IVS3-IVS4 region is restricted to the peripheral nervous system, and its inclusion slows the speed of channel activation. To investigate the effects of exon 31a in more detail, we generated four tsA201 cell lines stably expressing CaV2.2 splice isoforms. Coexpression of auxiliary CaVβ and CaVα2δ subunits was required to reconstitute currents with the kinetics of N-type channels from neurons. Channels including exon 31a activated and deactivated more slowly at all voltages. Current densities were high enough in the stable cell lines co-expressing CaVα2δ to resolve gating currents. The steady-state voltage dependence of charge movement was not consistently different between splice isoforms, but on gating currents from the exon 31a-containing CaV2.2 isoform decayed with a slower time course, corresponding to slower movement of the charge sensor. Exon 31a-containing CaV2.2 is restricted to peripheral ganglia; and the slower gating kinetics of CaV2.2 splice isoforms containing exon 31a correlated reasonably well with the properties of native N-type currents in sympathetic neurons. Our results suggest that alternative splicing in the S3-S4 linker influences the kinetics but not the voltage dependence of N-type channel gating.


1982 ◽  
Vol 79 (4) ◽  
pp. 571-602 ◽  
Author(s):  
J M Dubois ◽  
M F Schneider

Intramembrane charge movement (Q) and sodium current (INa) were monitored in isolated voltage-clamped frog nodes of Ranvier, ON charge movements (QON) for pulses from the holding potential (-100 mV) to potentials V less than or equal to 0 mV followed single exponential time courses, whereas two exponentials were found for pulses to V greater than or equal to 20 mV. The voltage dependence of both QON and its time constant tauON indicated that the two ON components resolved at V greater than or equal to 20 mV were also present, though not resolvable, for pulses to V less than or equal to 0 mV. OFF charge movements (QOFF) monitored at various potentials were well described by single exponentials. When QOFF was monitored at -30 or -40 mV after a 200-microsecond pulse to +20 mV and QON was monitored at the same potential using pulses directly from -100 mV, tauON/tauOFF = 2.5 +/- 0.3. At a set OFF potential (-90 to -70 mV), tauOFF first increased with increasing duration tON of the preceding pulse to a given potential (0 to +30 mV) and then decreased with further increases in tON. The declining phase of tauOFF followed a time course similar to that of the decline in QOFF with tON. For the same pulse protocol, the OFF time constant tauNa for INA also first increased with tON but then remained constant over the tON interval during which tauOFF and QOFF were declining. After 200- or 300-microsecond pulses to +20, +20, or +50 mV, tauOFF/tauNa at -70 to -90 mV was 1.2 +/- 0.1. Similar tauOFF/tauNa ratios were predicted by channel models having three identical charged gating particles that can rapidly and reversibly form an immobile dimer or trimer after independently crossing the membrane from their OFF to their ON locations.


1956 ◽  
Vol 187 (3) ◽  
pp. 549-557 ◽  
Author(s):  
Gordon M. Schoepfle

The time dependent change in magnitude of the nodal action potential was analyzed as a function of time and of change in membrane potential during brief intervals of anodal polarization. The time course of this function involves an exponential term whose time constant decreases to a limiting value as extent of membrane hyperpolarization is progressively increased. While the time course of change in spike height cannot be correlated with any change in membrane potential induced by the polarization, the kinetics suggest that the sodium inactivation mechanism of Hodgkin and Huxley is sufficient to account for the results obtained. Brief direct current pulses elicit changes of membrane potential during activity which indicate that an augmented change in resistance of the hyperpolarized node is sufficient to account for the time dependent increase in spike height. These findings are consistent with the Hodgkin-Huxley scheme in that hyperpolarization of the squid axon membrane at constant membrane potential inhibits ‘sodium inactivation’ thereby allowing sodium conductance and sodium current to attain greater than normal values at peak time of activity. It is concluded that no change in emf of the membrane need be postulated in order to account for the time dependent increase in spike height during hyperpolarization of normal or depressed nodes.


1996 ◽  
Vol 107 (6) ◽  
pp. 715-730 ◽  
Author(s):  
M D Gomez ◽  
E Nasi

The receptor potential of rhabdomeric photoreceptors is mediated primarily by a Na influx, but other ions must also permeate through light-dependent channels to account for some properties of the photoresponse. We examined ion conduction in macroscopic and single-channel light-induced currents of slug and scallop photoreceptors. In the absence of Na, a fivefold change in extracellular K shifted the reversal voltage of the photocurrent (Vrev) by approximately 27 mV. Because the dependency of Vrev on [K]o was sub-Nernstian, and Vrev in each condition was more positive than Ek, some other ion(s) with a positive equilibrium potential must be implicated, in addition to K. We assessed the participation of calcium, an important candidate because of its involvement in light adaptation. Three strategies were adopted to minimize the impairments to cytosolic Ca homeostasis and loss of responsiveness that normally result from the required ionic manipulations: (a) Internal dialysis with Na-free solutions, to prevent reverse operation of the Na/Ca exchanger. (b) Rapid solution changes, temporally limiting exposure to potentially detrimental ionic conditions. (c) Single-channel recording, exposing only the cell-attached patch of membrane to the test solutions. An inward whole-cell photocurrent could be measured with Ca as the only extracellular charge carrier. Decreasing the [Ca]o to 0.5 mM reduced the response by 43% and displaced the reversal potential by -4.3 mV; the shift was larger (delta Vrev = -44 mV) when intracellular permeant cations were also removed. In all cases, however, the current carried by Ca was < 5% of that measured with normal [Na]o. Unitary light-activated currents were reduced in a similar way when the pipette contained only divalent cations, indicating a substantial selectivity for Na over Ca. The fall kinetics of the photoresponse was slower when external Ca was replaced by Ba, or when the membrane was depolarized; however, dialysis with 10 mM BAPTA failed to antagonize this effect, suggesting that mechanisms other than the Ca influx participate in the modulation of the time course of the photocurrent.


1996 ◽  
Vol 76 (3) ◽  
pp. 2125-2130 ◽  
Author(s):  
I. A. Fleidervish ◽  
M. J. Gutnick

1. In whole cell recordings from layer V neurons in slices of mouse somatosensory neocortex, tetrodotoxin (TTX)-sensitive persistent Na+ current (INaP) was studied by blocking K+ currents with intracellular Cs+ and Ca2+ currents with extracellular Cd2+. During slow voltage ramps, INaP began to activate at around -60 mV, and attained a peak at around -25 mV. The peak amplitude of INaP varied widely from cell to cell (range 60-3,160 pA; median 308 pA, n = 77). At potentials more positive than -35 mV, INaP in all cells was superimposed on a large, TTX-resistant outward current. 2. In hybrid clamp experiments, INaP was significantly reduced by a preceding high-frequency train of spikes. 3. INaP underwent pronounced slow inactivation, which was revealed by systematically varying the ramp speed between 233 and 2.33 mV/s, or varying the duration of a depolarizing prepulse between 0.1 and 10 s. 4. Onset of slow inactivation at +20 mV was monoexponential with tau = 2.06 s (n = 17 cells). Recovery from slow inactivation was voltage dependent. It followed a monoexponential time course with tau = 2.31 s (n = 6) at -70 mV and tau = 1.10 s (n = 4) at -90 mV. These values are not significantly different than values previously reported for slow inactivation of fast-inactivating INa. 5. Slow inactivation of neocortical INaP will influence all neuronal functions in which this current plays a role, including spike threshold determination, synaptic integration, and active propagation in dendrites. The kinetics of slow inactivation suggest that it may be a factor not only during extremely intense spiking, but also during periods of "spontaneous" activity.


1993 ◽  
Vol 265 (4) ◽  
pp. H1301-H1309 ◽  
Author(s):  
Y. Sakakibara ◽  
T. Furukawa ◽  
D. H. Singer ◽  
H. Jia ◽  
C. L. Backer ◽  
...  

Although fast sodium current (INa) plays a major role in the generation and conduction of the cardiac impulse, the electrophysiological characteristics of INa in isolated human ventricular myocytes have not yet been fully described. We characterized the human ventricular INa of enzymatically isolated myocytes using whole cell voltage-clamp techniques. Sixty myocytes were isolated from ventricular specimens obtained from 22 patients undergoing open-heart surgery. A low temperature (17 degrees C) and Na+ concentration in the external solution (5 or 10 mM) allowed good voltage control and facilitated the measurement of INa. Cs+ was substituted for K+ in both internal and external solutions to block K+ currents, and F- was added to the internal solution to block Ca2+ current. INa was activated at a voltage threshold of approximately -70 mV, and maximal inward current was obtained at approximately -30 mV (holding potential = -140 mV). The voltage dependence of steady-state INa availability (h infinity) was sigmoidal with half inactivation occurring at -97.3 +/- 1.1 mV and a slope factor of 5.77 +/- 0.10 mV (n = 60). We did not detect any significant differences in these parameters in cells from patients with a variety of disease states, with or without congestive heart failure. The overlap in voltage dependence of h infinity and Na+ conductance suggested the presence of a Na+ "window" current. An inactivation time course was voltage dependent and was fitted best by the sum of two exponentials. The rate of recovery from inactivation also was voltage dependent and fitted by the sum of two exponentials.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document