scholarly journals Cation Activation of the Basolateral Sodium-Potassium Pump in Turtle Colon

1983 ◽  
Vol 82 (3) ◽  
pp. 315-329 ◽  
Author(s):  
D R Halm ◽  
D C Dawson

The current generated by electrogenic sodium-potassium exchange at the basolateral membrane of the turtle colon can be measured directly in tissues that have been treated with serosal barium (to block the basolateral potassium conductance) and mucosal amphotericin B (to reduce the cation selectivity of the apical membrane). We studied the activation of this pump current by mucosal sodium and serosal potassium, rubidium, cesium, and ammonium. The kinetics of sodium activation were consistent with binding to three independent sites on the cytoplasmic side of the pump. The pump was not activated by cellular lithium ions. The kinetics of serosal cation activation were consistent with binding to two independent sites with the selectivity Rb > K > Cs > NH4. The properties and kinetics of the basolateral Na/K pump in the turtle colon are at least qualitatively similar to those ofthe well-characterized Na/K-ATPase of the human red blood cell .

1987 ◽  
Vol 253 (6) ◽  
pp. F1263-F1272 ◽  
Author(s):  
M. Hunter ◽  
J. D. Horisberger ◽  
B. Stanton ◽  
G. Giebisch

Single collecting tubules of Amphiuma kidneys were perfused in vitro to characterize their electrophysiological properties. The lumen-negative potential (-24 mV) was abolished by amiloride in the lumen and by ouabain in the bath. Ion substitution experiments in the lumen demonstrated the presence of a large sodium conductance in the apical cell membrane, but no evidence was obtained for a significant potassium or chloride conductance. Ion substitutions in the bath solution and the depolarizing effect of barium on the basolateral membrane potential demonstrated the presence of a large potassium conductance in the basolateral cell membrane. Measurements of dilution potentials in amiloride-treated tubules revealed a modest cation selectivity of the paracellular pathway. These results support a cell model in which sodium reabsorption occurs by electrodiffusion across the apical cell membrane and active transport across the basolateral cell membrane. The absence of a detectable potassium conductance in the apical cell membrane suggests that secretion of this ion cannot take place by diffusion from cell to lumen.


Work on ion transport in plant cells and tissues is largely concerned with the properties of cells rather than of cell layers, and the evidence is on the whole against an important role for asymmetric ion transport across cell layers equivalent to animal epithelia. Cells structurally specialized for transport, having a large increase in surface area, seem to occur singly or in small groups, but not to be organized into closely packed layers; they are known as transfer cells and were described in a wide variety of situations by Gunning & Pate (1969). At the cell level, ion transport is best characterized in giant algal cells, but the situation may well be similar in higher plants. In Nitella translucens an ouabain-sensitive ATP-dependent sodium-potassium exchange pump at the plasmalemma maintains the high K/Na of the cell, and the high internal osmotic pressure is achieved by net salt uptake by a (chloride + cations) pump, also at the plasmalemma. The linkage between chloride and cations seems more likely to be chemical than electrogenic. This pump may be energized by a membrane redox system, but is not ATP-powered. The mechanism for initial entry of chloride to the cell seems also to control the distribution of tracer chloride between cytoplasm and vacuole, since the two processes of entry and transfer to the vacuole are very closely linked. The kinetics of vacuolar transfer are consistent with a pinocytotic entry of salt at the plasmalemma, fusion ofpinocytotic vesicles with the endoplasmic reticulum, from which new vacuole is formed. The process of discharge to the vacuole seems to be quantized, but the mechanism and significance of this observation are not understood.


1985 ◽  
Vol 1 (1-2) ◽  
pp. 89-101 ◽  
Author(s):  
D.L. Sparks ◽  
T.H. Carski

1983 ◽  
Vol 244 (6) ◽  
pp. F639-F645 ◽  
Author(s):  
M. J. Welsh

Addition of barium ion, Ba2+, to the submucosal bathing solution of canine tracheal epithelium reversibly decreased the short-circuit current and increased transepithelial resistance. The decrease in short-circuit current represented a decrease in the net rate of Cl secretion with no change in the rate of Na absorption. Intracellular microelectrode techniques and an equivalent electrical circuit analysis were used to localize the effect of Ba2+ to an inhibition of the permeability of the basolateral membrane to K. Ba2+ (2 mM) doubled basolateral membrane resistance, decreased the equivalent electromotive force at the basolateral membrane, and decreased the magnitude of the depolarization of basolateral membrane voltage produced by increasing the submucosal K concentration. The inhibition of the basolateral K permeability depolarized the negative intracellular voltage, resulting in both a decrease in the driving force for Cl exit and an estimated increase in intracellular Cl concentration. These studies indicate that there is a Ba2+-inhibitable K conductance at the basolateral membrane of tracheal epithelial cells and that the K permeability plays an important role in the generation of the negative intracellular electrical potential that provides the driving force for Cl exit from the cell.


1990 ◽  
Vol 259 (2) ◽  
pp. C215-C223 ◽  
Author(s):  
O. A. Candia

Forskolin (and other Cl- secretagogues) does not affect the very small Na(+)-originated short-circuit current (Isc) across frog corneal epithelium bathed in Cl- free solutions. However, forskolin in combination with increased PCO2 bubbling of the solutions (5-20% CO2) stimulated Isc proportionally to PCO2 to a maximum of approximately 8 microA/cm2. This current could be eliminated and reinstated by sequentially changing the gas composition of the bubbling to 100% air and 20% CO2-80% air. The same effects were observed when PCO2 changes were limited to the apical-side solution. Stroma-to-tear HCO3- movement was deemed unlikely, since the increase in Isc was observed with a HCO3(-)-free solution on the stromal side and CO2 gassing limited to the tear side. From the effects of ouabain and tryptamine, at least 80% of the Isc across the basolateral membrane can be accounted for by the Na+ pump current plus K+ movement from cell to bath. Methazolamide also inhibited Isc. Current across the apical membrane cannot be attributed to an electronegative Na(+)-HCO3- symport given the insensitivity of Isc to a disulfonic stilbene and the fact that stroma-to-tear Na+ fluxes did not increase on stimulation of Isc. The tear-to-stroma Na+ flux also remained unaltered, negating an increased apical bath-to-cell Na+ flow. The forskolin-20% CO2 manipulation produced a depolarization of the intracellular potential, a reduction in the apical-to-basolateral resistance ratio, and a decrease in transepithelial resistance.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (1) ◽  
pp. G28-G34 ◽  
Author(s):  
W. E. Khalbuss ◽  
R. Alkiek ◽  
C. G. Marousis ◽  
R. C. Orlando

K+ conductance in apical and basolateral cell membranes of rabbit esophageal epithelial cells was investigated within intact epithelium by impalement with conventional microelectrodes from luminal or serosal sides. Under steady-state conditions, K+ conductance was demonstrated in basolateral, but not apical, membranes by showing 1) membrane depolarization upon exposure to either solutions high in K+ (20-65 mM) or containing Ba2+, tetraethylammonium, or quinine, and 2) a resistance ratio that increased on exposure to high K+ solution and decreased on exposure to Ba2+, quinine, and tetraethylammonium. From exposures to high K+, the apparent K+ transference number and electromotive force generated at the basolateral membrane were calculated and found to be 0.42 +/- 0.01 and -83 +/- 3 mV, respectively. Furthermore, basolateral K+ conductance was shown to be important for maintaining resting net transepithelial Na+ absorption in that high K+ or barium inhibited the transepithelial potential difference and short-circuit current of Ussing-chambered epithelia. We conclude that under steady-state conditions the basolateral, but not apical, membranes of esophageal epithelial cells contain a K(+)-conductive pathway and that this pathway is important for active sodium absorption.


2000 ◽  
Vol 116 (1) ◽  
pp. 47-60 ◽  
Author(s):  
R. Daniel Peluffo ◽  
José M. Argüello ◽  
Joshua R. Berlin

The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K -ATPase α subunit, in determining the voltage and extracellular K + (K +o) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the α1 subunit of sheep Na,K -ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ (37°C). Na,K -pump current produced by the ouabain-resistant control enzyme (RD), containing amino acid substitutions Gln111Arg and Asn122Asp, displayed a membrane potential and K +o dependence similar to wild-type Na,K -ATPase during superfusion with 0 and 148 mM Na+-containing salt solutions. Additional substitution of alanine at Ser775 or Glu779 produced 155- and 15-fold increases, respectively, in the K +o concentration that half-maximally activated Na,K -pump current at 0 mV in extracellular Na+-free solutions. However, the voltage dependence of Na,K -pump current was unchanged in RD and alanine-substituted enzymes. Thus, large changes in apparent K +o affinity could be produced by mutations in the fifth transmembrane segment of the Na,K -ATPase with little effect on voltage-dependent properties of K + transport. One interpretation of these results is that protein structures responsible for the kinetics of K +o binding and/or occlusion may be distinct, at least in part, from those that are responsible for the voltage dependence of K +o binding to the Na,K -ATPase.


1991 ◽  
Vol 260 (6) ◽  
pp. F861-F867 ◽  
Author(s):  
J. S. Beck ◽  
S. Breton ◽  
R. Laprade ◽  
G. Giebisch

The hypothesis that an increase of calcium leads to activation of calcium-activated ionic conductances during cell swelling was examined in the isolated perfused proximal convoluted tubule of the rabbit. Reduction of bath and luminal osmolality by 90 mosmol/kgH2O caused the cells to swell by 23.6 +/- 1.5% (n = 5) and intracellular calcium to rise from 227 +/- 35 to 347 +/- 60 nM (n = 6). Both these increases were transient, with volume decreasing to 5.5 +/- 1.2% above control and intracellular calcium concentration decreasing to 272 +/- 46 nM after 5-9 min. The addition of glucose and alanine to the tubule lumen to increase transcellular sodium transport caused a sustained increase in cell volume of 15.6 +/- 3.4% (n = 4). In parallel experiments, no significant increase in intracellular calcium concentration was observed. Addition of 1 microM of the calcium ionophore, ionomycin, reversibly increased intracellular calcium by 224 +/- 60 nM from a control value of 301 +/- 29 nM (n = 7) and reversibly depolarized the basolateral membrane by 3.6 +/- 0.9 mV (n = 5). However, there was no initial increase in the apparent transference number for potassium or chloride and no significant change in cell volume. We conclude from these observations that the sustained increase in basolateral potassium conductance observed when cells are swollen by hypotonicity or increased sodium transport (J. S. Beck and D. J. Potts. J. Physiol. Lond. 425: 369-378, 1990) is not due to a calcium-activated potassium conductance.


Sign in / Sign up

Export Citation Format

Share Document