scholarly journals Slow permeation of organic cations in acetylcholine receptor channels.

1986 ◽  
Vol 87 (6) ◽  
pp. 985-1001 ◽  
Author(s):  
J A Sanchez ◽  
J A Dani ◽  
D Siemen ◽  
B Hille

Block, permeation, and agonist action of small organic amine compounds were studied in acetylcholine receptor (AChR) channels. Single channel conductances were calculated from fluctuation analysis at the frog neuromuscular junction and measured by patch clamp of cultured rat myotubes. The conductance was depressed by a few millimolar external dimethylammonium, arginine, dimethyldiethanolammonium, and Tris. Except with dimethylammonium, the block was intensified with hyperpolarization. A two-barrier Eyring model describes the slowed permeation and voltage dependence well for the three less permeant test cations. The cations were assumed to pause at a site halfway across the electric field of the channel while passing through it. For the voltage-independent action of highly permeant dimethylammonium, a more appropriate model might be a superficial binding site that did not prevent the flow of other ions, but depressed it. Solutions of several amine compounds were found to have agonist activity at millimolar concentrations, inducing brief openings of AChR channels on rat myotubes in the absence of ACh.

1992 ◽  
Vol 100 (4) ◽  
pp. 729-748 ◽  
Author(s):  
L D Chabala

Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and -100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential.


2012 ◽  
Vol 140 (5) ◽  
pp. 529-540 ◽  
Author(s):  
Lei Yang ◽  
Johan Edvinsson ◽  
Lawrence G. Palmer

We investigated the effects of changing extracellular K+ concentrations on block of the weak inward-rectifier K+ channel Kir1.1b (ROMK2) by the three intracellular cations Mg2+, Na+, and TEA+. Single-channel currents were monitored in inside-out patches made from Xenopus laevis oocytes expressing the channels. With 110 mM K+ in the inside (cytoplasmic) solution and 11 mM K+ in the outside (extracellular) solution, these three cations blocked K+ currents with a range of apparent affinities (Ki (0) = 1.6 mM for Mg2+, 160 mM for Na+, and 1.8 mM for TEA+) but with similar voltage dependence (zδ = 0.58 for Mg2+, 0.71 for Na+, and 0.61 for TEA+) despite having different valences. When external K+ was increased to 110 mM, the apparent affinity of all three blockers was decreased approximately threefold with no significant change in the voltage dependence of block. The possibility that the transmembrane cavity is the site of block was explored by making mutations at the N152 residue, a position previously shown to affect rectification in Kir channels. N152D increased the affinity for block by Mg2+ but not for Na+ or TEA+. In contrast, the N152Y mutation increased the affinity for block by TEA+ but not for Na+ or Mg2+. Replacing the C terminus of the channel with that of the strong inward-rectifier Kir2.1 increased the affinity of block by Mg2+ but had a small effect on that by Na+. TEA+ block was enhanced and had a larger voltage dependence. We used an eight-state kinetic model to simulate these results. The effects of voltage and external K+ could be explained by a model in which the blockers occupy a site, presumably in the transmembrane cavity, at a position that is largely unaffected by changes in the electric field. The effects of voltage and extracellular K+ are explained by shifts in the occupancy of sites within the selectivity filter by K+ ions.


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


1998 ◽  
Vol 275 (3) ◽  
pp. C646-C652 ◽  
Author(s):  
Guy Droogmans ◽  
Jean Prenen ◽  
Jan Eggermont ◽  
Thomas Voets ◽  
Bernd Nilius

We have studied the effects of calix[4]arenes on the volume-regulated anion channel (VRAC) currents in cultured calf pulmonary artery endothelial cells. TS- and TS-TM-calix[4]arenes induced a fast inhibition at positive potentials but were ineffective at negative potentials. Maximal block occurred at potentials between 30 and 50 mV. Lowering extracellular pH enhanced the block and shifted the maximum inhibition to more negative potentials. Current inhibition was also accompanied by an increased current noise. From the analysis of the calix[4]arene-induced noise, we obtained a single-channel conductance of 9.3 ± 2.1 pS ( n = 9) at +30 mV. The voltage- and time-dependent block were described using a model in which calix[4]arenes bind to a site at an electrical distance of 0.25 inside the channel with an affinity of 220 μM at 0 mV. Binding occludes VRAC at moderately positive potentials, but calix[4]arenes permeate the channel at more positive potentials. In conclusion, our data suggest an open-channel block of VRAC by calix[4]arenes that also depends on the protonation of the binding site within the pore.


2007 ◽  
Vol 97 (1) ◽  
pp. 892-900 ◽  
Author(s):  
Tyler K. Best ◽  
Richard J. Siarey ◽  
Zygmunt Galdzicki

Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). We have recently shown that the DS mouse model, Ts65Dn, overexpresses GIRK2 throughout the brain and in particular the hippocampus. Here we report that this overexpression leads to a significant increase (∼2-fold) in GABAB-mediated GIRK current in primary cultured hippocampal neurons. The dose response curves for peak and steady-state GIRK current density is significantly shifted left toward lower concentrations of baclofen in Ts65Dn neurons compared with diploid controls, consistent with increased functional expression of GIRK channels. Stationary fluctuation analysis of baclofen-induced GIRK current from Ts65Dn neurons indicated no significant change in single-channel conductance compared with diploid. However, significant increases in GIRK channel density was found in Ts65Dn neurons. In normalized baclofen-induced GIRK current and GIRK current kinetics no difference was found between diploid and Ts65Dn neurons, which suggests unimpaired mechanisms of interaction between GIRK channel and GABAB receptor. These results indicate that increased expression of GIRK2 containing channels have functional consequences that likely affect the balance between excitatory and inhibitory neuronal transmission.


2020 ◽  
Vol 152 (9) ◽  
Author(s):  
Kathiresan Natarajan ◽  
Nuriya Mukhtasimova ◽  
Jeremías Corradi ◽  
Matías Lasala ◽  
Cecilia Bouzat ◽  
...  

The α7 nicotinic acetylcholine receptor (nAChR) is among the most abundant types of nAChR in the brain, yet the ability of nerve-released ACh to activate α7 remains enigmatic. In particular, a major population of α7 resides in extra-synaptic regions where the ACh concentration is reduced, owing to dilution and enzymatic hydrolysis, yet ACh shows low potency in activating α7. Using high-resolution single-channel recording techniques, we show that extracellular calcium is a powerful potentiator of α7 activated by low concentrations of ACh. Potentiation manifests as robust increases in the frequency of channel opening and the average duration of the openings. Molecular dynamics simulations reveal that calcium binds to the periphery of the five ligand binding sites and is framed by a pair of anionic residues from the principal and complementary faces of each site. Mutation of residues identified by simulation prevents calcium from potentiating ACh-elicited channel opening. An anionic residue is conserved at each of the identified positions in all vertebrate species of α7. Thus, calcium associates with a novel structural motif on α7 and is an obligate cofactor in regions of limited ACh concentration.


2007 ◽  
Vol 293 (1) ◽  
pp. F236-F244 ◽  
Author(s):  
Ling Yu ◽  
Douglas C. Eaton ◽  
My N. Helms

To better understand how renal Na+ reabsorption is altered by heavy metal poisoning, we examined the effects of several divalent heavy metal ions (Zn2+, Ni2+, Cu2+, Pb2+, Cd2+, and Hg2+) on the activity of single epithelial Na+ channels (ENaC) in a renal epithelial cell line (A6). None of the cations changed the single-channel conductance. However, ENaC activity [measured as the number of channels ( N) × open probability ( Po)] was decreased by Cd2+ and Hg2+ and increased by Cu2+, Zn2+, and Ni2+ but was not changed by Pb2+. Of the cations that induced an increase in Na+ channel function, Zn2+ increased N, Ni2+ increased Po, and Cu2+ increased both. The cysteine modification reagent [2-(trimethylammonium)ethyl]methanethiosulfonate bromide also increased N, whereas diethylpyrocarbonate, which covalently modifies histidine residues, affected neither Po nor N. Cu2+ increased N and stimulated Po by reducing Na+ self-inhibition. Furthermore, we observed that ENaC activity is slightly voltage dependent and that the voltage dependence of ENaC is insensitive to extracellular Na+ concentration; however, apical application of Ni2+ or diethylpyrocarbonate reduced the channel voltage dependence. Thus the voltage sensor of Xenopus ENaC is different from that of typical voltage-gated channels, since voltage appears to be sensed by histidine residues in the extracellular loops of ENaC, rather than by charged amino acids in a transmembrane domain.


Author(s):  
Douglas A. Bayliss

The KCNK gene family encodes two-pore-domain potassium (K2P) channels, which generate the background (“leak”) K+ currents that establish a negative resting membrane potential in cells of the nervous system. A pseudotetrameric K+-selective pore is formed by pairing channel subunits, each with two pore-domains, in homo- or heterodimeric conformations. Unique features apparent from high-resolution K2P channel structures include a domain-swapped extracellular cap domain, a lateral hydrophobic-lined fenestration connecting the lipid bilayer to the channel vestibule, and an antiparallel proximal C-terminal region that links the paired subunits and provides a site for polymodal channel modulation. Individual channels transition between open and closed states, with the channel gate located at the selectivity filter. In general, K2P channels display relatively modest voltage- and time-dependent gating, together with distinct single-channel rectification properties, that conspire to yield characteristic weakly rectifying macroscopic currents over a broad range of membrane potentials (i.e., background K+ currents). Of particular note, K2P channel activity can be regulated by a wide range of physicochemical factors, neuromodulators, and clinically useful drugs; a distinct repertoire of activators and inhibitors for different K2P channel subtypes endows each with unique modulatory potential. Thus, by mediating background currents and serving as targets for multiple modulators, K2P channels are able to dynamically regulate key determinants of cell-intrinsic electroresponsive properties. The roles of specific K2P channels in various physiological processes and pathological conditions are now beginning to come into focus, and this may portend utility for these channels as potential therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document