scholarly journals Comparison of charge movement components in intact and cut twitch fibers of the frog. Effects of stretch and temperature.

1991 ◽  
Vol 98 (2) ◽  
pp. 287-314 ◽  
Author(s):  
C S Hui

Charge movements were measured in frog intact fibers with the three-microelectrode technique and in cut fibers with the double Vaseline gap technique. At 13-14 degrees C, the ON segments of charge movement records from both preparations showed an early I beta component and a late I gamma hump component. When an intact fiber was cooled to 4-7 degrees C, the time-to-peak of I gamma (tp,gamma) was prolonged, but I gamma still appeared as a hump. Q-V plots from intact fibers at 4-7 degrees C were fitted with a sum of two Boltzmann distribution functions (method 1). The more steeply voltage-dependent component, identified with Q gamma, accounted for 32.1% (SEM 2.2%) of the total charge. This fraction was larger than the 22.6% (SEM 1.5%) obtained by separating the ON currents with a sum of two kinetic functions (method 2). The total charge in cut fibers stretched to a sarcomere length of 3.5 microns at 13-14 degrees C was separated into Q beta and Q gamma by methods 1 and 2. The fraction of Q gamma in the total charge was 51.3% (SEM 1.7%) and 53.7% (SEM 1.8%), respectively, suggesting that cut fibers have a larger proportion of Q gamma:Q beta than intact fibers. When cut fibers were stretched to a sarcomere length of 4 microns, the proportion of Q gamma:Q beta was unchanged. Between 4 and 13 degrees C, the Q10 of l/tp,gamma in intact fibers was 2.33 (SEM 0.33) and that of 1/tau beta was less than 1.44 (SEM 0.04), implying that the kinetics of I gamma has a steeper temperature dependence than the kinetics of I beta. When cut fibers were cooled from 14 to 6 degrees C, I gamma in the ON segment generally became too broad to be manifested as a hump. In a cut fiber in which I gamma was manifested as a hump, the Q10 of l/tp,gamma was 2.08 and that of l/tau beta was less than 1.47. Separating the Q-V plots from cut fibers at different temperatures by method 1 showed that the proportion of Q gamma:Q beta was unaffected by temperature change. The appearance of I gamma humps at low temperatures in intact fibers but generally not in cut fibers suggests an intrinsic difference between the two fiber preparations.

1992 ◽  
Vol 99 (6) ◽  
pp. 985-1016 ◽  
Author(s):  
C S Hui ◽  
W Chen

Charge movement was measured in frog cut twitch fibers with the double Vaseline-gap technique. 25 microM tetracaine had very little effect on the maximum amounts of Q beta and Q gamma but slowed the kinetics of the I gamma humps in the ON segments of TEST-minus-CONTROL current traces, giving rise to biphasic transients in the difference traces. This concentration of tetracaine also shifted V gamma 3.7 (SEM 0.7) mV in the depolarizing direction, resulting in a difference Q-V plot that was bell-shaped with a peak at approximately -50 mV. 0.5-1.0 mM tetracaine suppressed the total amount of charge. The suppressed component had a sigmoidal voltage distribution with V = -56.6 (SEM 1.1) mV, k = 2.5 (SEM 0.5) mV, and qmax/cm = 9.2 (SEM 1.5) nC/microF, suggesting that the tetracaine-sensitive charge had a steep voltage dependence, a characteristic of the Q gamma component. An intermediate concentration (0.1-0.5 mM) of tetracaine shifted V gamma and partially suppressed the tetracaine-sensitive charge, resulting in a difference Q-V plot that rose to a peak and then decayed to a plateau level. Following a TEST pulse to greater than -60 mV, the slow inward current component during a post-pulse to approximately -60 mV was also tetracaine sensitive. The voltage distribution of the charge separated by tetracaine (method 1) was compared with those separated by three other existing methods: (a) the charge associated with the hump component separated by a sum of two kinetic functions from the ON segment of a TEST-minus-CONTROL current trace (method 2), (b) the steeply voltage-dependent component separated from a Q-V plot of the total charge by fitting with a sum of two Boltzmann distribution functions (method 3), and (c) the sigmoidal component separated from the Q-V plot of the final OFF charge obtained with a two-pulse protocol (method 4). The steeply voltage-dependent components separated by all four methods are consistent with each other, and are therefore concluded to be equivalent to the same Q gamma component. The shortcomings of each separation method are critically discussed. Since each method has its own advantages and disadvantages, it is recommended that, as much as possible, Q gamma should be separated by more than one method to obtain more reliable results.


1991 ◽  
Vol 98 (2) ◽  
pp. 315-347 ◽  
Author(s):  
C S Hui

Charge movement was measured in frog cut twitch fibers with the double Vaseline gap technique. Five manipulations listed below were applied to investigate their effects on the hump component (I gamma) in the ON segments of TEST minus CONTROL current traces. When external Cl-1 was replaced by MeSO3- to eliminate Cl current, I gamma peaked earlier due to a few millivolts shift of the voltage dependence of I gamma kinetics in the negative direction. The Q-V plots in the TEA.Cl and TEA.MeSO3 solutions were well fitted by a sum of two Boltzmann distribution functions. The more steeply voltage-dependent component (Q gamma) had a V approximately 6 mV more negative in the TEA.MeSO3 solution than in the TEA.Cl solution. These voltage shifts were partially reversible. When creatine phosphate in the end pool solution was removed, the I gamma hump disappeared slowly over the course of 20-30 min, partly due to a suppression of Q gamma. The hump reappeared when creatine phosphate was restored. When 0.2-1.0 mM Cd2+ was added to the center pool solution to block inward Ca current, the I gamma hump became less prominent due to a prolongation in the time course of I gamma but not to a suppression of Q gamma. When the holding potential was changed from -90 to -120 mV, the amplitude of I beta was increased, thereby obscuring the I gamma hump. Finally, when a cut fiber was stimulated repetitively, I gamma lost its hump appearance because its time course was prolonged. In an extreme case, a 5-min resting interval was insufficient for a complete recovery of the waveform. In general, a stimulation rate of once per minute had a negligible effect on the shape of I gamma. Of the five manipulations, MeSO3- has the least perturbation on the appearance of I gamma and is potentially a better substitute for Cl- than SO2-(4) in eliminating Cl current if the appearance of the I gamma hump is to be preserved.


1992 ◽  
Vol 99 (6) ◽  
pp. 1017-1043 ◽  
Author(s):  
C S Hui ◽  
W Chen

Charge movement was measured in frog cut twitch fibers with the double Vaseline-gap technique. Steady-state inactivation of charge movement was studied by changing the holding potential from -90 mV to a level ranging from -70 to -30 mV. Q beta and Q gamma at each holding potential were separated by fitting the Q-V plot with a sum of two Boltzmann distribution functions. At -70 mV Q beta and Q gamma were inactivated to 54.0% (SEM 2.2) and 82.7% (SEM 3.0) of the amounts at -90 mV. At holding potentials greater than or equal to -60 mV, more Q gamma was inactivated than Q beta, and at -30 mV Q gamma was completely inactivated but Q beta was not. There was no holding potential at which Q beta was unaffected and Q gamma was completely inactivated. The differences between the residual fractions of Q beta and Q gamma are significant at all holding potentials (P less than 0.001-0.05). The plot of the residual fraction of Q beta or Q gamma versus holding potential can be fitted well by an inverted sigmoidal curve that is a mirror image of the activation curve of the respective charge component. The pair of curves for Q gamma correlates well with those for tension generation or Ca release obtained by other investigators. The time courses of the inactivation of Q beta and Q gamma were studied by obtaining several Q-V plots with conditioning depolarizations lasting 1-20 s and separating each Q-V plot into Q beta and Q gamma components by fitting with a sum of two Boltzmann distribution functions. The inactivation time constant of Q beta was found to be 5-10 times as large as that of Q gamma. During repetitive stimulation, prominent I gamma humps could be observed in TEST-minus-CONTROL current traces and normal Q gamma components could be separated from the Q-V plots, whether 20 or 50 mM EGTA was present in the internal solution, whether 2 or 10 stimulations were used, and whether the stimuli were separated by 400 ms or 6 s. Repetitive stimulation slowed the kinetics of the I gamma hump and could shift the Q-V curve slightly in the depolarizing direction in some cases, resulting in an apparent suppression of charge at the potentials that fall on the steep part of the Q-V curve.


1996 ◽  
Vol 107 (4) ◽  
pp. 515-534 ◽  
Author(s):  
C L Huang

The effects of the ryanodine receptor (RyR) antagonists ryanodine and daunorubicin on the kinetic and steady-state properties of intramembrane charge were investigated in intact voltage-clamped frog skeletal muscle fibers under conditions that minimized time-dependent ionic currents. A hypothesis that RyR gating is allosterically coupled to configurational changes in dihydropyridine receptors (DHPRs) would predict that such interactions are reciprocal and that RyR modification should influence intramembrane charge. Both agents indeed modified the time course of charging transients at 100-200-microM concentrations. They independently abolished the delayed charging phases shown by q gamma currents, even in fibers held at fully polarized, -90-mV holding potentials; such waveforms are especially prominent in extracellular solutions containing gluconate. Charge movements consistently became exponential decays to stable baselines in the absence of intervening inward or other time-dependent currents. The steady-state charge transfers nevertheless remained equal through the ON and the OFF parts of test voltage steps. The charge-voltage function, Q(VT), shifted by approximately +10 mV, particularly through those test potentials at which delayed q gamma currents normally took place but retained steepness factors (k approximately 8.0 to 10.6 mV) that indicated persistent, steeply voltage-dependent q gamma contributions. Furthermore, both RyR antagonists preserved the total charge, and its variation with holding potential, Qmax (VH), which also retained similarly high voltage sensitivities (k approximately 7.0 to 9.0 mV). RyR antagonists also preserved the separate identities of q gamma and q beta species, whether defined by their steady-state voltage dependence or inactivation or pharmacological properties. Thus, tetracaine (2 mM) reduced the available steady-state charge movement and gave shallow Q(VT) (k approximately 14 to 16 mV) and Qmax (VH) (k approximately 14 to 17 mV) curves characteristic of q beta charge. These features persisted with exposure to test agent. Finally, q gamma charge movements showed steep voltage dependences with both activation (k approximately 4.0 to 6.5 mV) and inactivation characteristics (k approximately 4.3 to 6.6 mV) distinct from those shown by the remaining q beta charge, whether isolated through differential tetracaine sensitivities, or the full approximation of charge-voltage data to the sum of two Boltzmann distributions. RyR modification thus specifically alters q gamma kinetics while preserving the separate identities of steady-state q beta and q gamma charge. These findings permit a mechanism by which transverse tubular voltage provides the primary driving force for configurational changes in DHPRs, which might produce q gamma charge movement. However, they attribute its kinetic complexities to the reciprocal allosteric coupling by which DHPR voltage sensors and RyR-Ca2+ release channels might interact even though these receptors reside in electrically distinct membranes. RyR modification then would still permit tubular voltage change to drive net q gamma charge transfer but would transform its complex waveforms into simple exponential decays.


1990 ◽  
Vol 96 (2) ◽  
pp. 257-297 ◽  
Author(s):  
C S Hui ◽  
W K Chandler

Intramembranous charge movement was measured in cut twitch fibers mounted in a double Vaseline-gap chamber with either a tetraethylammonium chloride (TEA.Cl) or a TEA2.SO4 solution (13-14 degrees C) in the central pool. Charge vs. voltage data were fitted by a single two-state Boltzmann distribution function. The average values of V (the voltage at which steady-state charge is equally distributed between the two Boltzmann states), k (the voltage dependence factor), and qmax/cm (the maximum charge divided by the linear capacitance, both per unit length of fiber) were V = -53.3 mV (SEM, 1.1 mV), k = 6.3 mV (SEM, 0.3 mV), qmax/cm = 18.0 nC/microF (SEM, 1.1 nC/microF) in the TEA.Cl solution; and V = -35.1 mV (SEM, 1.8 mV), k = 10.5 mV (SEM, 0.9 mV), qmax/cm = 36.3 nC/microF (SEM, 3.2 nC/microF) in the TEA2.SO4 solution. These values of k are smaller than those previously reported for cut twitch fibers and are as small as those reported for intact fibers. If a correction is made for the contributions of currents from under the Vaseline seals, V = -51.2 mV (SEM, 1.1 mV), k = 7.2 mV (SEM, 0.4 mV), qmax/cm = 22.9 nC/microF (SEM, 1.4 nC/microF) in the TEA.Cl solution; and V = -34.0 mV (SEM, 1.9 mV), k = 10.1 mV (SEM, 1.1 mV), qmax/cm = 38.8 nC/microF (SEM, 3.2 nC/microF) in the TEA2.SO4 solution. With this correction, however, the fit of the theoretical curve to the data is poor. A good fit with this correction can be obtained with a sum of two Boltzmann distribution functions. The first has average values V = -33.0 mV (SEM, 2.8 mV), k = 11.0 mV (SEM, 0.5 mV), qmax/cm = 10.6 nC/microF (SEM, 1.0 nC/microF) in the TEA.Cl solution; and V = -20.0 mV (SEM, 3.3 mV), k = 17.0 mV (SEM, 2.0 mV), qmax/cm = 36.4 nC/microF (SEM, 2.3 nC/microF) in the TEA2.SO4 solution. The second has average values V = -56.5 mV (SEM, 1.3 mV), k = 2.9 mV (SEM, 0.4 mV), qmax/cm = 13.2 nC/microF (SEM, 1.0 nC/microF) in the TEA.Cl solution; and V = -41.6 mV (SEM, 1.4 mV), k = 2.5 mV (SEM, 0.8 mV), qmax/cm = 11.8 nC/microF (SEM, 1.7 nC/microF) in the TEA2.SO4 solution. When a fiber is depolarized to near V of the second Boltzmann function, a slowly developing "hump" appears in the ON-segment of the current record.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 82 (5) ◽  
pp. 679-701 ◽  
Author(s):  
D T Campbell

Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.


1982 ◽  
Vol 79 (4) ◽  
pp. 571-602 ◽  
Author(s):  
J M Dubois ◽  
M F Schneider

Intramembrane charge movement (Q) and sodium current (INa) were monitored in isolated voltage-clamped frog nodes of Ranvier, ON charge movements (QON) for pulses from the holding potential (-100 mV) to potentials V less than or equal to 0 mV followed single exponential time courses, whereas two exponentials were found for pulses to V greater than or equal to 20 mV. The voltage dependence of both QON and its time constant tauON indicated that the two ON components resolved at V greater than or equal to 20 mV were also present, though not resolvable, for pulses to V less than or equal to 0 mV. OFF charge movements (QOFF) monitored at various potentials were well described by single exponentials. When QOFF was monitored at -30 or -40 mV after a 200-microsecond pulse to +20 mV and QON was monitored at the same potential using pulses directly from -100 mV, tauON/tauOFF = 2.5 +/- 0.3. At a set OFF potential (-90 to -70 mV), tauOFF first increased with increasing duration tON of the preceding pulse to a given potential (0 to +30 mV) and then decreased with further increases in tON. The declining phase of tauOFF followed a time course similar to that of the decline in QOFF with tON. For the same pulse protocol, the OFF time constant tauNa for INA also first increased with tON but then remained constant over the tON interval during which tauOFF and QOFF were declining. After 200- or 300-microsecond pulses to +20, +20, or +50 mV, tauOFF/tauNa at -70 to -90 mV was 1.2 +/- 0.1. Similar tauOFF/tauNa ratios were predicted by channel models having three identical charged gating particles that can rapidly and reversibly form an immobile dimer or trimer after independently crossing the membrane from their OFF to their ON locations.


1998 ◽  
Vol 111 (2) ◽  
pp. 313-342 ◽  
Author(s):  
N.E. Schoppa ◽  
F.J. Sigworth

A functional kinetic model is developed to describe the activation gating process of the Shaker potassium channel. The modeling in this paper is constrained by measurements described in the preceding two papers, including macroscopic ionic and gating currents and single channel ionic currents. These data were obtained from the normally activating wild-type channel as well as a mutant channel V2, in which the leucine at position 382 has been mutated to a valine. Different classes of models that incorporate Shaker's symmetrical tetrameric structure are systematically examined. Many simple gating models are clearly inadequate, but a model that can account for all of the qualitative features of the data has the channel open after its four subunits undergo three transitions in sequence, and two final transitions that reflect the concerted action of the four subunits. In this model, which we call Scheme 3+2′, the channel can also close to several states that are not part of the activation path. Channel opening involves a large total charge movement (10.8 e0), which is distributed among a large number of small steps each with rather small charge movements (between 0.6 and 1.05 e0). The final two transitions are different from earlier steps by having slow backward rates. These steps confer a cooperative mechanism of channel opening at Shaker's activation voltages. In the context of Scheme 3+2′, significant effects of the V2 mutation are limited to the backward rates of the final two transitions, implying that L382 plays an important role in the conformational stability of the final two states.


1985 ◽  
Vol 85 (1) ◽  
pp. 21-42 ◽  
Author(s):  
B J Simon ◽  
K G Beam

A model was developed to describe the kinetics of slow, voltage-dependent charge movement in the rat omohyoid muscle. To represent the electrically distributed nature of the transverse tubular system (t-system), we followed an approach similar to that described by Adrian and Peachey (1973 J. Physiol. [Lond.]. 235:103), and approximated the fiber with 12 concentric cylindrical shells. Incorporated into each shell were capacitative and conductive elements that represented the passive electrical properties of the t-system, and an element representing the mobile charge. The charge was assumed to obey a two-state scheme, in which the redistribution of charge is governed by a first-order reaction, and the rate constants linking the two states were assumed to depend on potential according to the constant field expression. The predictions of this "distributed two-state model" were compared with charge movements experimentally measured in individual fibers. For this comparison, first, the passive electrical parameters of the model were adjusted to fit the experimental linear capacity transient. Next, the Boltzmann expression was fitted to the steady state Q vs. V data of the fiber, thereby constraining the voltage dependence of the rate constants, but not their absolute magnitude. The absolute magnitude was determined by fitting the theory to an experimental charge movement at a single test potential, which in turn constrained the fits at all other test potentials. The distributed two-state model well described the rising and falling phases of ON, OFF, and stepped OFF charge movements at temperatures ranging from 3 to 25 degrees C. We thus conclude that tubular delays are sufficient to account for the rounded rising phase of experimental charge movements, and that it is unnecessary to postulate higher-order reaction schemes for the underlying charge redistribution.


2012 ◽  
Vol 302 (3) ◽  
pp. C539-C554 ◽  
Author(s):  
Olga Andrini ◽  
Anne-Kristine Meinild ◽  
Chiara Ghezzi ◽  
Heini Murer ◽  
Ian C. Forster

Type IIa/b Na+-coupled inorganic phosphate cotransporters (NaPi-IIa/b) are considered to be exclusively Na+ dependent. Here we show that Li+ can substitute for Na+ as a driving cation. We expressed NaPi-IIa/b in Xenopus laevis oocytes and performed two-electrode voltage-clamp electrophysiology and uptake assays to investigate the effect of external Li+ on their kinetics. Replacement of 50% external Na+ with Li+ reduced the maximum transport rate and the rate-limiting plateau of the Pi-induced current began at less hyperpolarizing potentials. Simultaneous electrophysiology and 22Na uptake on single oocytes revealed that Li+ ions can substitute for at least one of the three Na+ ions necessary for cotransport. Presteady-state assays indicated that Li+ ions alone interact with the empty carrier; however, the total charge displaced was 70% of that with Na+ alone, or when 50% of the Na+ was replaced by Li+. If Na+ and Li+ were both present, the midpoint potential of the steady-state charge distribution was shifted towards depolarizing potentials. The charge movement in the presence of Li+ alone reflected the interaction of one Li+ ion, in contrast to 2 Na+ ions when only Na was present. We propose an ordered binding scheme for cotransport in which Li+ competes with Na+ to occupy the putative first cation interaction site, followed by the cooperative binding of one Na+ ion, one divalent Pi anion, and a third Na+ ion to complete the carrier loading. With Li+ bound, the kinetics of subsequent partial reactions were significantly altered. Kinetic simulations of this scheme support our experimental data.


Sign in / Sign up

Export Citation Format

Share Document