scholarly journals The influence of transverse tubular delays on the kinetics of charge movement in mammalian skeletal muscle.

1985 ◽  
Vol 85 (1) ◽  
pp. 21-42 ◽  
Author(s):  
B J Simon ◽  
K G Beam

A model was developed to describe the kinetics of slow, voltage-dependent charge movement in the rat omohyoid muscle. To represent the electrically distributed nature of the transverse tubular system (t-system), we followed an approach similar to that described by Adrian and Peachey (1973 J. Physiol. [Lond.]. 235:103), and approximated the fiber with 12 concentric cylindrical shells. Incorporated into each shell were capacitative and conductive elements that represented the passive electrical properties of the t-system, and an element representing the mobile charge. The charge was assumed to obey a two-state scheme, in which the redistribution of charge is governed by a first-order reaction, and the rate constants linking the two states were assumed to depend on potential according to the constant field expression. The predictions of this "distributed two-state model" were compared with charge movements experimentally measured in individual fibers. For this comparison, first, the passive electrical parameters of the model were adjusted to fit the experimental linear capacity transient. Next, the Boltzmann expression was fitted to the steady state Q vs. V data of the fiber, thereby constraining the voltage dependence of the rate constants, but not their absolute magnitude. The absolute magnitude was determined by fitting the theory to an experimental charge movement at a single test potential, which in turn constrained the fits at all other test potentials. The distributed two-state model well described the rising and falling phases of ON, OFF, and stepped OFF charge movements at temperatures ranging from 3 to 25 degrees C. We thus conclude that tubular delays are sufficient to account for the rounded rising phase of experimental charge movements, and that it is unnecessary to postulate higher-order reaction schemes for the underlying charge redistribution.

1983 ◽  
Vol 48 (11) ◽  
pp. 3279-3286
Author(s):  
Slavko Hudeček ◽  
Miloslav Bohdanecký ◽  
Ivana Hudečková ◽  
Pavel Špaček ◽  
Pavel Čefelín

The reaction between hexamethylenediisocyanate and 1-pentanol in toluene was studied by means of reversed-phase liquid chromatography. By employing this method, it was possible to determine all components of the reaction mixture including both products, i.e. N-(6-isocyanate hexyl)pentylcarbamate and N,N'-bis(pentyloxycarbonyl)hexamethylenediamine. Relations for the calculation of kinetic constants were derived assuming a competitive consecutive second-order reaction. It was demonstrated that the reaction involved in this case is indeed a second-order reaction, and the rate constants of the first and second consecutive reactions were determined.


1989 ◽  
Vol 54 (2) ◽  
pp. 536-543 ◽  
Author(s):  
Josef Chmelík ◽  
Pavel Anzenbacher ◽  
Vítěz Kalous

The renaturation of the two main components of human serum albumin, i.e. of mercaptalbumin and nonmercaptalbumin, was studied polarographically. It has been demonstrated that renaturation of both proteins after 1-min denaturation in 8M urea is reversible. By contrast, renaturation after 200 min denaturation in 8M urea is an irreversible process; the characteristics of renatured mercaptalbumin differ more from the properties of the native protein than the characteristics of nonmercaptalbumin. The studies of the kinetics of renaturation of both proteins have shown that the renaturation can be represented by a two-state model. This means that the existence of stable intermediary products during the renaturation process was not determined polarographically.


1991 ◽  
Vol 98 (2) ◽  
pp. 287-314 ◽  
Author(s):  
C S Hui

Charge movements were measured in frog intact fibers with the three-microelectrode technique and in cut fibers with the double Vaseline gap technique. At 13-14 degrees C, the ON segments of charge movement records from both preparations showed an early I beta component and a late I gamma hump component. When an intact fiber was cooled to 4-7 degrees C, the time-to-peak of I gamma (tp,gamma) was prolonged, but I gamma still appeared as a hump. Q-V plots from intact fibers at 4-7 degrees C were fitted with a sum of two Boltzmann distribution functions (method 1). The more steeply voltage-dependent component, identified with Q gamma, accounted for 32.1% (SEM 2.2%) of the total charge. This fraction was larger than the 22.6% (SEM 1.5%) obtained by separating the ON currents with a sum of two kinetic functions (method 2). The total charge in cut fibers stretched to a sarcomere length of 3.5 microns at 13-14 degrees C was separated into Q beta and Q gamma by methods 1 and 2. The fraction of Q gamma in the total charge was 51.3% (SEM 1.7%) and 53.7% (SEM 1.8%), respectively, suggesting that cut fibers have a larger proportion of Q gamma:Q beta than intact fibers. When cut fibers were stretched to a sarcomere length of 4 microns, the proportion of Q gamma:Q beta was unchanged. Between 4 and 13 degrees C, the Q10 of l/tp,gamma in intact fibers was 2.33 (SEM 0.33) and that of 1/tau beta was less than 1.44 (SEM 0.04), implying that the kinetics of I gamma has a steeper temperature dependence than the kinetics of I beta. When cut fibers were cooled from 14 to 6 degrees C, I gamma in the ON segment generally became too broad to be manifested as a hump. In a cut fiber in which I gamma was manifested as a hump, the Q10 of l/tp,gamma was 2.08 and that of l/tau beta was less than 1.47. Separating the Q-V plots from cut fibers at different temperatures by method 1 showed that the proportion of Q gamma:Q beta was unaffected by temperature change. The appearance of I gamma humps at low temperatures in intact fibers but generally not in cut fibers suggests an intrinsic difference between the two fiber preparations.


2018 ◽  
Vol 175 (10) ◽  
pp. 1719-1730 ◽  
Author(s):  
Dong Guo ◽  
Lambertus A Peletier ◽  
Lloyd Bridge ◽  
Wesley Keur ◽  
Henk de Vries ◽  
...  

2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


2019 ◽  
Vol 15 (5-6) ◽  
Author(s):  
H. Hadiyanto ◽  
Marcelinus Christwardana ◽  
Meiny Suzery ◽  
Heri Sutanto ◽  
Ayu Munti Nilamsari ◽  
...  

AbstractPhycocyanin is a natural substance that can be used as an antioxidant and food colorant. The quality of phycocyanin deteriorates when it is exposed to heat, and such deterioration is evidenced by decreases in its antioxidant activity and color. Encapsulation, which introduces a coating material over a substance of interest, has been applied to prevent changes in substance quality. The objective of the present research is to evaluate the kinetics of thermal degradation of phycocyanin coated with carrageenan or chitosan. Encapsulated phycocyanin samples were exposed to temperatures of 40, 50, or 60 °C for 90 min, and kinetics of the resulting degradation was evaluated to determine changes in sample quality. The results showed that the thermal degradation of encapsulated phycocyanin at 40–60 °C follows first-order reaction kinetics with reaction rate constants (k) of 4.67–9.17 × 10–5 s-1 and 3.83–7.67 × 10–5 s-1 for carrageenan and chitosan, respectively, and that the k of encapsulated phycocyanin is slower than that obtained from samples without the coating materials (control). Encapsulation efficiencies (EE) of 68.66 % and 76.45 %, as well as loading capacities of 45.28 % and 49.16 %, were, respectively, obtained for carrageenan and chitosan.


1982 ◽  
Vol 79 (4) ◽  
pp. 571-602 ◽  
Author(s):  
J M Dubois ◽  
M F Schneider

Intramembrane charge movement (Q) and sodium current (INa) were monitored in isolated voltage-clamped frog nodes of Ranvier, ON charge movements (QON) for pulses from the holding potential (-100 mV) to potentials V less than or equal to 0 mV followed single exponential time courses, whereas two exponentials were found for pulses to V greater than or equal to 20 mV. The voltage dependence of both QON and its time constant tauON indicated that the two ON components resolved at V greater than or equal to 20 mV were also present, though not resolvable, for pulses to V less than or equal to 0 mV. OFF charge movements (QOFF) monitored at various potentials were well described by single exponentials. When QOFF was monitored at -30 or -40 mV after a 200-microsecond pulse to +20 mV and QON was monitored at the same potential using pulses directly from -100 mV, tauON/tauOFF = 2.5 +/- 0.3. At a set OFF potential (-90 to -70 mV), tauOFF first increased with increasing duration tON of the preceding pulse to a given potential (0 to +30 mV) and then decreased with further increases in tON. The declining phase of tauOFF followed a time course similar to that of the decline in QOFF with tON. For the same pulse protocol, the OFF time constant tauNa for INA also first increased with tON but then remained constant over the tON interval during which tauOFF and QOFF were declining. After 200- or 300-microsecond pulses to +20, +20, or +50 mV, tauOFF/tauNa at -70 to -90 mV was 1.2 +/- 0.1. Similar tauOFF/tauNa ratios were predicted by channel models having three identical charged gating particles that can rapidly and reversibly form an immobile dimer or trimer after independently crossing the membrane from their OFF to their ON locations.


1985 ◽  
Vol 85 (1) ◽  
pp. 1-19 ◽  
Author(s):  
B J Simon ◽  
K G Beam

Voltage-dependent charge movements were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Contraction was abolished with hypertonic sucrose. The standard (ON-OFF) protocol for eliciting charge movements was to depolarize the fiber from -90 mV to a variable test potential (V) and then repolarize the fiber to -90 mV. The quantity of charge moved saturated at test potentials of approximately 0 mV. The steady state dependence of the amount of charge that moves as a function of test potential could be well fitted by the Boltzmann relation: Q = Qmax/(1 + exp[-(V - V)/k]), where Qmax is the maximum charge that can be moved, V is the potential at which half the charge moves, and k is a constant. At 15 degrees C, these values were Qmax = 28.5 nC/microF, V = -34.2 mV, and k = 8.7 mV. Qmax, k, and V exhibited little temperature dependence over the range 7-25 degrees C. "Stepped OFF" charge movements were elicited by depolarizing the fiber from -90 mV to a fixed conditioning level that moved nearly all the mobile charge (0 mV), and then repolarizing the fiber to varying test potentials. The sum of the charge that moved when the fiber was depolarized directly from -90 mV to a given test potential and the stepped OFF charge that moved when the fiber was repolarized to the same test potential had at all test potentials a value close to Qmax for that fiber. In nearly all cases, the decay phase of ON, OFF, and stepped OFF charge movements could be well fitted with a single exponential. The time constant, tau decay, for an ON charge movement at a given test potential was comparable to tau decay for a stepped OFF charge movement at the same test potential. Tau decay had a bell-shaped dependence on membrane potential: it was slowest at a potential near V (the midpoint of the steady state charge distribution) and became symmetrically faster on either side of this potential. Raising the temperature from 7 to 15 degrees C caused tau decay to become faster by about the same proportion at all potentials, with a Q10 averaging 2.16. Raising the temperature from 15 to 25 degrees C caused tau decay to become faster at potentials near V, but not at potentials farther away.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document