scholarly journals Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction.

1991 ◽  
Vol 98 (6) ◽  
pp. 1161-1179 ◽  
Author(s):  
S Sivaramakrishnan ◽  
G D Bittner ◽  
M S Brodwick

Membrane potential changes that typically evoke transmitter release were studied by recording intracellularly from the excitor axon near presynaptic terminals of the crayfish opener neuromuscular junction. Depolarization of the presynaptic terminal with intracellular current pulses activated a conductance that caused a decrease in depolarization during the constant current pulse. This conductance was identified as a calcium-activated potassium conductance, gK(Ca), by its disappearance in a zero-calcium/EGTA medium and its block by cadmium, barium, tetraethylammonium ions, and charybdotoxin. In addition to gK(Ca), a delayed rectifier potassium conductance (gK) is present in or near the presynaptic terminal. Both these potassium conductances are involved in the repolarization of the membrane during a presynaptic action potential.

1991 ◽  
Vol 98 (6) ◽  
pp. 1181-1196 ◽  
Author(s):  
S Sivaramakrishnan ◽  
M S Brodwick ◽  
G D Bittner

Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage-dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type.


1994 ◽  
Vol 72 (4) ◽  
pp. 1925-1937 ◽  
Author(s):  
W. J. Spain

1. Intracellular recording from cat Betz cells in vitro revealed a strong correlation between the dominant effect of serotonin (5-HT) and the Betz cell subtype in which it occurred. In large Betz cells that show posthyperpolarization excitation (termed PHE cells), 5-HT evoked a long-lasting membrane depolarization, whereas 5-HT evoked an initial hyperpolarization of variable duration in smaller Betz cells that show posthyperpolorization inhibition (termed PHI cells). 2. Voltage-clamp studies revealed that 5-HT caused a depolarizing shift of activation of the cation current Ih, which resulted in the depolarization in PHE cells, whereas the hyperpolarization in PHI cells is caused by an increase in a resting potassium conductance. 3. The effect of 5-HT on firing properties during constant current stimulation also differed consistently in the two types of Betz cells. In PHE cells the initial firing rate increased after 5-HT application, but the steady firing was unaffected. The depolarizing shift of Ih activation caused the increase of initial firing rate. 4. In PHI cells 5-HT caused a decrease in spike frequency adaptation. The decrease in adaptation was caused by a combination of two conductance changes. First, 5-HT caused a slow afterdepolarization in PHI cells that could trigger repetitive firing in the absence of further stimulation. The sADP depended on calcium entry through voltage-gated channels and was associated with a decrease in membrane conductance. Second, 5-HT caused reduction of a slow calcium-dependent potassium current that normally contributes to slow adaptation. 5. In conclusion, the effect of 5-HT on excitability differs systematically in Betz cell subtypes in part because they have different dominant ionic mechanisms that are modulated. If we assume that PHE cells and PHI cells represent fast and slow pyramidal tract (PT) neurons respectively, 5-HT will cause early recruitment of fast PT cells and delay recruitment of slow PT cells during low levels of synaptic excitation.


1979 ◽  
Vol 206 (1164) ◽  
pp. 293-306 ◽  

The resting electrical properties of the presynaptic terminal of the squid giant synapse have been determined by using constant current pulses. After short periods of repetitive stimulation, the terminal resistance, time constant and capacitance are found to be increased. These changes are absent in terminals bathed in artificial sea water containing no calcium, and sea water containing 5 mM cobalt. It seems likely that these changes are associated with transmitter release.


1986 ◽  
Vol 126 (1) ◽  
pp. 119-132
Author(s):  
M. J. O'DONNELL

Depolarization of Rhodnius oocytes evokes action potentials (APs) whose rising phase is calcium-dependent. The ionic basis for the repolarizing (i.e. falling) phase of the AP was examined. Addition of potassium channel blockers (tetraethylammonium, tetrabutylammonium, 4-aminopyridine, atropine) to the bathing saline increased the duration and overshoot of APs. Intracellular injection of tetraethyl ammonium had similar effects. These results suggest that a voltage-dependent potassium conductance normally contributes to repolarization. Repolarization does not require a chloride influx, because substitution of impermeant anions for chloride did not increase AP duration. AP duration and overshoot actually decreased progressively when chloride levels were reduced. Current/voltage curves show inward and outward rectification, properties often associated with potassium conductances. Outward rectification was largely blocked by external tetraethylammonium. Possible functions of the rectifying properties of the oocyte membrane are discussed.


2002 ◽  
Vol 136 (4) ◽  
pp. 540-549 ◽  
Author(s):  
Andrea Olschewski ◽  
Matthias Wolff ◽  
Michael E Bräu ◽  
Gunter Hempelmann ◽  
Werner Vogel ◽  
...  

1989 ◽  
Vol 62 (1) ◽  
pp. 174-184 ◽  
Author(s):  
M. O. Poulter ◽  
T. Hashiguchi ◽  
A. L. Padjen

1. Intracellular microelectrode recordings from large sensory and motor myelinated axons in spinal roots of Rana pipiens were used to study the effects of dendrotoxin (DTX), a specific blocker of a fast activating potassium current (GKf1). 2. Dendrotoxin reduced the ability of myelinated sensory and motor axons to accommodate to a constant stimulus. A depolarizing current step, which normally evoked only one action potential, after dendrotoxin treatment (200-500 nM) produced a train of action potentials. These spike trains lasted 29 +/- 2.8 (SE) ms on average in sensory fibers (n = 18) and 40.2 +/- 4.5 ms in motor fibers (n = 9). 3. After dendrotoxin treatment, in addition to a reduction in the ability to accommodate to a constant stimulus, a slowing in the rate of action potential generation was evident (spike frequency adaptation). 4. Dendrotoxin had no effect on the rising phase of conducted action potentials evoked by peripheral stimulation. Together with a lack of effect on the absolute refractory period, these results indicate that dendrotoxin does not affect sodium channel activity. 5. The steady-state voltage/current relationship was unchanged in response to hyperpolarizing current pulses; however, there was a significant increase in cord resistance in response to depolarizing current steps, demonstrating that DTX decreases outward rectification. 6. A computer model based on Hodgkin and Huxley equations was developed, which included the three voltage-dependent potassium conductances described by Dubois. The model reproduced major experimental results: removal of the conductance, termed GKf1, reduced the accommodation in the early phase of a continuous stimulus, indicating that this current could be responsible for the early accommodation. The hypothesis that the slow potassium conductance GKs regulates late accommodation and action potential frequency adaptation is also supported by the computer model. 7. In summary, these results suggest that in amphibian myelinated sensory and motor axons, the activity of potassium conductances can account for accommodation and adaptation without involvement of sodium conductance activity.


1993 ◽  
Vol 69 (6) ◽  
pp. 2150-2163 ◽  
Author(s):  
F. Viana ◽  
D. A. Bayliss ◽  
A. J. Berger

1. The role of multiple potassium conductances in action potential repolarization and repetitive firing behavior of hypoglossal motoneurons was investigated using intracellular recording techniques in a brain stem slice preparation of the neonatal rat (0-15 days old). 2. The action potential was followed by two distinct afterhyperpolarizations (AHPs). The early one was of short duration and is termed the fAHP; the later AHP was of longer duration and is termed the mAHP. The amplitudes of both AHPs were enhanced by membrane potential depolarization (further from EK). In addition, their amplitudes were reduced by high extracellular K+ concentration, suggesting that activation of potassium conductances underlies both phases of the AHP. 3. Prolongation of the action potential and blockade of the fAHP were observed after application of 1) tetraethylammonium (TEA) (1-10 mM) and 2) 4-aminopyridine (4-AP) (0.1-0.5 mM). Calcium channel blockers had little or no effect on the fAHP or action potential duration. 4. The size of the mAHP was diminished by 1) manganese, 2) lowering external Ca2+, 3) apamin, and 4) intracellular injection of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) suggesting that influx of calcium activates the potassium conductance that underlies the mAHP. 5. The mAHP was unaffected by nifedipine (20 microM), but was strongly reduced by focal application of omega-conotoxin GVIA, suggesting that N-type calcium channels represent the major calcium influx pathway for activation of the calcium-dependent K+ conductance underlying the mAHP. 6. Repetitive firing properties were investigated by injecting long-duration depolarizing current pulses. Steady-state firing rose linearly with injected current amplitude. The slope of the firing frequency-current (f-I) relationship averaged approximately 30 Hz/nA in control conditions. Blockade of the conductance underlying the mAHP caused a marked increase in the minimal repetitive firing frequency and in the slope of the f-I plot, indicating a prominent role for the conductance underlying the mAHP in controlling repetitive firing behavior. 7. We conclude that action potential repolarization and AHPs are due to activation of pharmacologically distinct potassium conductances. Whereas repolarization of the action potential and the fAHP involves primarily a voltage-dependent, calcium-independent potassium conductance that is TEA- and 4-AP-sensitive, the mAHP requires the influx of extracellular calcium and is apamin sensitive. Activation of the calcium-activated potassium conductance greatly influences the normal repetitive firing of neonatal hypoglossal motoneurons.


Sign in / Sign up

Export Citation Format

Share Document