A new method for determining temperature and emission measure during solar flares from light curves of soft X-ray line fluxes

1985 ◽  
Vol 293 ◽  
pp. 595 ◽  
Author(s):  
P. L. Bornmann
1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2020 ◽  
Vol 639 ◽  
pp. L5
Author(s):  
Dong Li ◽  
Song Feng ◽  
Wei Su ◽  
Yu Huang

Context. Very long-periodic pulsations during preflare phases (preflare-VLPs) have been detected in the full-disk solar soft X-ray (SXR) flux. They may be regarded as precursors to solar flares and may help us better understand the trigger mechanism of solar flares. Aims. In this Letter, we report a preflare-VLP event prior to the onset of an M1.1 circular-ribbon flare on 2015 October 16. It was simultaneously observed in Hα, SXR, and extreme ultraviolet (EUV) wavelengths. Methods. The SXR fluxes in 1−8 Å and 1−70 Å were recorded by the Geostationary Operational Environmental Satellite (GOES) and Extreme Ultraviolet Variability Experiment, respectively; the light curves in Hα and EUV 211 Å were integrated over a small local region, which were measured by the 1 m New Vacuum Solar Telescope and the Atmospheric Imaging Assembly (AIA), respectively. The preflare-VLP is identified as the repeat and quasi-periodic pulses in light curves during preflare phase. The quasi-periodicity can be determined from the Fourier power spectrum with Markov chain Monte Carlo-based Bayesian. Results. Seven well-developed pulses are found before the onset of an M1.1 circular-ribbon flare. They are firstly seen in the local light curve in Hα emission and then discovered in full-disk SXR fluxes in GOES 1−8 Å and ESP 1−70 Å, as well as the local light curve in AIA 211 Å. These well-developed pulses can be regarded as the preflare-VLP, which might be modulated by LRC-circuit oscillation in the current-carrying plasma loop. The quasi-period is estimated to be ∼9.3 min. Conclusions. We present the first report of a preflare-VLP event in the local Hα line and EUV wavelength, which could be considered a precursor of a solar flare. This finding should therefore prove useful for the prediction of solar flares, especially for powerful flares.


2019 ◽  
Vol 622 ◽  
pp. A210 ◽  
Author(s):  
M. G. Guarcello ◽  
G. Micela ◽  
S. Sciortino ◽  
J. López-Santiago ◽  
C. Argiroffi ◽  
...  

Context. Flares are powerful events ignited by a sudden release of magnetic energy which triggers a cascade of interconnected phenomena, each resulting in emission in different electromagnetic bands. In fact, in the Sun flares are observed across the whole electromagnetic spectrum. Multi-band observations of stellar flares are instead rare. This limits our ability to extend what we learn from solar flares to the case of flares occurring in stars with different properties. Aims. With the aim of studying flares in the 125-Myr-old stars in the Pleiades observed simultaneously in optical and X-ray light, we obtained new XMM-Newton observations of this cluster during the observations of Kepler K2 Campaign 4. The objective of this paper is to characterize the most powerful flares observed in both bands and to constrain the energy released in the optical and X-ray, the geometry of the loops, and their time evolution. We also aim to compare our results to existing studies of flares occurring in the Sun and stars at different ages. Methods. We selected bright X-ray/optical flares that occurred in 12 known members of the Pleiades from their K2 and XMM-Newton light curves. The sample includes ten K-M stars, one F9 star, and one G8 star. Flare average properties were obtained from integrated analysis of the light curves during the flares. The time evolution of the plasma in the magnetic loops is constrained with time-resolved X-ray spectral analysis. Results. Most of the flares studied in this work emitted more energy in optical than in X-rays, as in most solar flares, even if the Pleiades flares output a larger fraction of their total energy in X-rays than typical solar flares do. Additionally, the energy budget in the two bands is weakly correlated. We also found comparable flare duration in optical and X-rays and observed that rapidly rotating stars (e.g., with rotation period shorter than 0.5 days) preferentially host short flares. We estimated the slope of the cooling path of the flares in the log(EM)-vs.-log(T) plane. The values we obtained are affected by large uncertainties, but their nominal values suggest that the flares analyzed in this paper are mainly due to single loops with no sustained heating occurring during the cooling phase. We also observed and analyzed oscillations with a period of 500 s during one of the flares. Conclusions. The flares observed in the Pleiades can be classified as “superflares” based on their energy budget in the optical, and share some of the properties of the flares observed in the Sun, despite being more energetic. For instance, as in most solar flares, more energy is typically released in the optical than in X-rays and the duration of the flares in the two bands is correlated. We have attempted a comparison between the X-ray flares observed in the Pleiades and those observed in clusters with different ages, but to firmly address any evolutionary pattern of flare characteristics, similar and uniform multi-wavelength analyses on more complete samples are necessary.


2004 ◽  
Vol 219 ◽  
pp. 91-102
Author(s):  
Harry P. Warren

The ability of the Transition Region and Coronal Explorer (TRACE) to image the Sun at high spatial resolution and high cadence over a very broad range of temperatures makes it a unique instrument for observing solar flare plasma. TRACE observations have confirmed the reconnection model for solar flares, at least qualitatively. TRACE flare observations show impulsive footpoint brightenings that are followed by the formation of high-temperature loops in the corona. These loops then cool to lower temperatures, forming post-flare loop arcades. Comparisons between TRACE and lower spatial resolution Yohkoh Soft X-Ray Telescope (SXT) observations have revealed that solar flares are composed of a multitude of fine coronal loops. Detailed hydrodynamic modeling of flare light curves shows that this fine scale structuring is crucial to understanding the evolution of the observed emission. Models based on single, isothermal loops are not consistent with the TRACE observations. Models based on the sequential heating of small-scale loops, in contrast, are able to reproduce many of the salient features of the observed light curves. We will discuss the implication of these results for more energetic stellar flares as well as smaller-scale events that may be responsible for the heating of solar active region loops.


1996 ◽  
Vol 460 ◽  
pp. 1034 ◽  
Author(s):  
U. Feldman ◽  
G. A. Doschek ◽  
W. E. Behring ◽  
K. J. H. Phillips

2004 ◽  
Vol 219 ◽  
pp. 176-180
Author(s):  
K. J. H. Phillips ◽  
J. Sylwester ◽  
B. Sylwester ◽  
E. Landi

Observations of the 3.3—6.1 Â X-ray line and continuous spectrum during four long-duration flares with the RESIK crystal spectrometer on the Coronas-F spacecraft have been analyzed to get the absolute abundances of potassium, argon, and sulphur. A differential emission measure of the form DEM ∝ exp(—Te/T0) was found to give the most consistent results of three models including an isothermal model. We obtained K/H = (3.7 ± 1.0) x 10—7, a factor 3 times photospheric; Ar/H = (2.8 ± 0.2) x 10—6, slightly lower than photospheric; and S/H = (2.2±0.4) x 10—5, approximately equal to photospheric. These measurements are consistent with a pattern in which elements with low (< 10 eV) first ionization potential are enriched in the corona by a factor of about 3 and elements of high first ionization potential have abundances approximately equal to photospheric.


1975 ◽  
Vol 68 ◽  
pp. 191-208
Author(s):  
Dayton W. Datlowe

Solar X-rays in the energy range 1–100 keV originate in hot plasmas and streams of energetic electrons in solar flares, and since these phenomena may represent a significant fraction of the energy in a flare, an understanding of them is important for any flare theory. This paper presents the results of the University of California, San Diego, solar X-ray instrument on the OSO-7 satellite. Study of the time evolution of the emission measure in a typical burst indicates that the growth of soft X-ray emission is due to the addition of new hot material to the flare plasma, and the study of the time evolution of the temperature of the plasma indicates that conduction is the dominant cooling mechanism. Comparison of the hard (10–100 keV) and soft (5–10 keV) data indicates that the main heat input to the flare plasma is not collisions by the electrons which make the hard X-rays. The fraction of soft X-ray bursts observed by the instrument which also have a detectable hard X-ray component is this result is the same for bursts which occured near the center of the disk (θ < 60°) and for those bursts believed to have been partly occulted by the limb, indicating that hard X-ray emission comes at least part from high in the corona. For a sample of 62 hard X-ray bursts which occurred near or beyond the limb, the spectral index of the hard X-ray power law was significantly larger, as compared with the spectra of a comparable number which occurred at solar longitudes less than 60°.


Sign in / Sign up

Export Citation Format

Share Document