Model light curves of linear Type II supernovae

1991 ◽  
Vol 374 ◽  
pp. 266 ◽  
Author(s):  
Douglas A. Swartz ◽  
J. Craig Wheeler ◽  
Robert P. Harkness
Keyword(s):  
Type Ii ◽  
2005 ◽  
Vol 192 ◽  
pp. 275-280 ◽  
Author(s):  
L. Zampieri ◽  
M. Ramina ◽  
A. Pastorello

SummaryWe present the results of a systematic analysis of a group of Type II plateau supernovae that span a large range in luminosities, from faint objects like SN 1997D and 1999br to very luminous events like SN 1992am. The physical properties of the supernovae appear to be related to the plateau luminosity or the expansion velocity. The simultaneous analysis of the observed light curves, line velocities and continuum temperatures leads us to robust estimates of the physical parameters of the ejected envelope. We find strong correlations among several parameters. The implications of these results regarding the nature of the progenitor, the central remnant and the Ni yield are also addressed.


2020 ◽  
Vol 499 (3) ◽  
pp. 4312-4324
Author(s):  
Alexandra Kozyreva ◽  
Luke Shingles ◽  
Alexey Mironov ◽  
Petr Baklanov ◽  
Sergey Blinnikov

ABSTRACT We systematically explore the effect of the treatment of line opacity on supernova light curves. We find that it is important to consider line opacity for both scattering and absorption (i.e. thermalization, which mimics the effect of fluorescence). We explore the impact of the degree of thermalization on three major types of supernovae: Type Ia, Type II-peculiar, and Type II-plateau. For this we use the radiative transfer code stella and analyse broad-band light curves in the context of simulations done with the spectral synthesis code artis and in the context of a few examples of observed supernovae of each type. We found that the plausible range for the ratio between absorption and scattering in the radiation hydrodynamics code stella is (0.8–1):(0.2–0), i.e. the recommended thermalization parameter is 0.9.


2005 ◽  
Vol 192 ◽  
pp. 567-572
Author(s):  
Inma Domínguez ◽  
Peter Höflich ◽  
Oscar Straniero ◽  
Marco Limongi ◽  
Alessandro Chieffi

SummaryWe have analyzed the influence of the stellar populations, from which SN progenitors come, on the observational outcome, including the metal free Pop. III. We use our models to study the evolution of the progenitor, the subsequent explosion and the light curves. For Type Ia, the variation of the main sequence mass of the progenitor of the exploding WD produces an offset in the maximum-decline relation of 0.2 mag. This effect is critical for the use of high redshift Type Ia SNe as cosmological standard candles. In contrast, the metallicity does not change the above relation (at maximum, ΔMV ≤0.06 mag). For Type II, we find a dependence of the light curve properties with both main sequence mass and metallicity of the progenitor, and we identify a rather homogeneous subclass, “Extreme II-P,” that may be used as a quasi-standard candle. Note that, although not as good as Type Ia for distance determinations, Type II are expected to have occurred since the first stars were formed.


2019 ◽  
Vol 629 ◽  
pp. A17
Author(s):  
Luc Dessart ◽  
Edouard Audit

Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation hydrodynamics simulations of type II SN light curves from red and blue supergiant star explosions to investigate the impact of inhomogeneities in density or composition on SN observables, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.


2020 ◽  
Vol 493 (2) ◽  
pp. 1761-1781 ◽  
Author(s):  
T M Reynolds ◽  
M Fraser ◽  
S Mattila ◽  
M Ergon ◽  
L Dessart ◽  
...  

ABSTRACT We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = −19.95 ± 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H α are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s−1, and then declining approximately linearly to 15 000 km s−1 over ∼100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the jekyll code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H α absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry.


2016 ◽  
Vol 823 (2) ◽  
pp. 127 ◽  
Author(s):  
Ehud Nakar ◽  
Dovi Poznanski ◽  
Boaz Katz
Keyword(s):  

2011 ◽  
Vol 7 (S279) ◽  
pp. 403-404
Author(s):  
Francesco Taddia

AbstractWe studied optical and near-infrared (NIR) light curves, and optical spectra of Supernovae (SNe) 2006V and 2006au, two objects monitored by the Carnegie Supernova Project (CSP) and displaying remarkable similarity to SN 1987A, although they were brighter, bluer and with higher expansion velocities. SN 2006au also shows an initial dip in the light curve, which we have interpreted as the cooling tail of the shock break-out. By fitting semi-analytic models to the UVOIR light curve of each object, we derive the physical properties of the progenitors and we conclude that SNe 2006V and 2006au were most likely Blue Supergiant (BSG) stars that exploded with larger energies as compared to that of SN 1987A. We are currently investigating the host galaxies of a few BSG SNe, in order to understand the role played by the metallicity in the production of these rare exploding BSG stars.


2007 ◽  
Author(s):  
Melina C. Bersten ◽  
Omar Benvenuto ◽  
Mario Hamuy ◽  
Stefan Immler ◽  
Kurt Weiler
Keyword(s):  

2011 ◽  
Vol 7 (S279) ◽  
pp. 34-39 ◽  
Author(s):  
Iair Arcavi

AbstractWe present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Program (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The latter class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. We present also host galaxy trends from the Palomar Transien Factory (PTF) core collapse SN sample, which augment some of the photometric results.


2010 ◽  
Vol 139 (6) ◽  
pp. 2300-2307 ◽  
Author(s):  
Katie Rabidoux ◽  
Horace A. Smith ◽  
Barton J. Pritzl ◽  
Wayne Osborn ◽  
Charles Kuehn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document