Role of Growth Regulators in Initiation of Secondary Xylem and Phloem Cells

1979 ◽  
Vol 140 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Marcia A. Harrison ◽  
Richard M. Klein
1974 ◽  
Vol 82 (1) ◽  
pp. 113-116 ◽  
Author(s):  
M. Abdel-Rahman ◽  
F. M. R. Isenberg

SUMMARYExperiments were conducted to study the effect of plant injection with growth regulators on the dormancy of onion bulbs cv. Elba Globe. Application of abscisic acid induced early senescence of the leaves and prolonged the rest period of the bulbs. This effect was partially overcome by subsequent applications of gibberellin, auxin or cytokinin and totally overcome with the application of a mixture of the three hormones. Maleic hydrazide application prolonged the rest period by inhibiting both sprouting and rooting of the bulbs throughout the storage period. This inhibitory effect was not overcome by the subsequent application of auxin, gibberellin, kinetin, or their combinations. Ethephon application increased rooting of bulbs and partially overcame the effect of abscisic acid on dormancy.


Author(s):  
P. Kaur ◽  
D. Mal ◽  
A. Sheokand ◽  
Sh weta ◽  
L. Singh ◽  
...  

2015 ◽  
Vol 44 ◽  
pp. 38-44 ◽  
Author(s):  
H. Sandhya ◽  
Rao Srinath

Suitable protocol for induction of callus and regeneration was developed from different explants viz., node, stem and leaves in Physalis minima. MS basal medium supplemented with various concentrations (1.0-4.0mg/l) of auxins like 2,4-Dichlorophenoxy acetic acid (2,4-D), α-naphthalene acetic acid (NAA) and Indole-3-acetic acid (IAA) and cytokinins (0.5-1.5mg/l) like BAP or Kn were used. All the three explants responded for induction of callus, however stem explants were found superior, followed by node and leaf. Callus induction was observed in all the auxins and combination of growth regulators used with varied mass (2010±1.10) and highest percentage of callus induction was observed from stem at 2.0mg/l 2,4-D (90%) followed by NAA (70%) and IAA (50%). Organogenesis was induced when nodal explants were transferred on MS medium supplemented with 2,4-D and Kn at various concentrations, maximum being on 2.0mg/l 2,4-D + 1.0mg/l Kn (90%). Regenerated shoots were elongated on 0.5mg/l GA3. The shoots were subsequently rooted on MS + 1.0mg/l IBA (95%) medium. Rooted shoots were hardened and acclimatized, later they were transferred to polycups containing soil, cocopeat and sand in the ratio 1:2:1.Keywords:Physalis minima, Node, Stem, Leaf, callus and growth regulators.


2020 ◽  
Vol 23 ◽  
pp. 03011
Author(s):  
Yuliya M. Andriyanova ◽  
Irina V. Sergeyeva ◽  
Nataliya N. Gusakova ◽  
Yuliya M. Mokhonko

Stress protectors (adaptogens) are among the most important factors that regulate growth processes at all stages of plant development. This article presents results of field studies of the effect of new synthetic plant growth regulators of stress protectors (adaptogens) on the elements of productivity and yield of spring oats of the Skakun variety. The obtained results during the research showed that all the studied derivatives of peredazinones are adaptogens and they contribute to an increased productivity and increased yield of spring oats. We studied the effect of pre-sowing treatment of seeds with new synthetic plant growth regulators of stress protectors on the quality indicators of cereal production of Skakun oats (protein, starch and amylolytic enzymes content in the cereal). Pre-sowing treatment of oat seeds increases the amount of protein in the cereal up to 15%, starch – up to 25%, amylase – up to 20%. We proved the ability of stress protectors to minimize the negative impact of heavy metals (lead, zinc) on agrophytocenoses, which will make it possible to obtain environmentally friendly cereal products when cultivating oats in anthropogenically polluted areas of the Saratov Oblast.


2015 ◽  
Vol 34 (4) ◽  
pp. 720-736 ◽  
Author(s):  
Adam Rajsz ◽  
Anna Warzybok ◽  
Magdalena Migocka

AbstractFull-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulators, and microbial elicitors, indicating a broad functional role of these proteins in plant responses to abiotic and biotic stress. Nevertheless, the structure and physiological function of full-size ABCGs in many plant species are still unknown. We have recently identified 16 genes encoding full-size ABCG proteins in cucumber and found that the transcripts of two of them, CsABCG36 (CsPDR8) and CsABCG40 (CsPDR12), are most abundant in roots and are significantly affected by phytohormones and auxin herbicide. In this study, we analyzed the structure and phylogeny of all the full-size cucumber ABCG transporters and studied the organ expression profiles of the remaining 14 CsABCG genes. In addition, we investigated the effect of different plant growth regulators and the diterpene sclareolide on CsABCG expression in cucumber roots. Until now, the full-size plant ABCG transporters have been grouped into five different clusters. The new phylogenetic analysis of full-size ABCGs from model plants and cucumber clustered these proteins into six different subgroups. Interestingly, the expression profiles of cucumber ABCG genes assigned to the same clusters were not correlated, suggesting functional diversification or different regulatory mechanisms of the full-size cucumber ABCG proteins.


IAWA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Bei Luo ◽  
Arata Yoshinaga ◽  
Tatsuya Awano ◽  
Keiji Takabe ◽  
Takao Itoh

Abstract We studied the time-course of stem response for six months following complete girdling in branches of Aquilaria sinensis to determine the potential role of interxylary phloem (IP) in this response. It was found that the vascular cambium, as well as its derivative secondary xylem and phloem, regenerated fully through redifferentiation of IP. We confirmed that vascular cambium regenerated within one month after girdling based on observation of new vessels, IP, and secondary phloem fibers. The time-course study showed that IPs made connections with each other, merged, and became larger through the proliferation of IPs parenchyma cells and the cleaving of secondary xylem in a narrow zone 400 to 1000 μm deep inside the girdled edge. This led to the formation of a complete circular sheath of vascular cambium, followed by the regeneration of vascular tissue. It is worth noting that the secondary xylem is regenerated always following the formation of a thick belt of wound xylem.


Sign in / Sign up

Export Citation Format

Share Document