scholarly journals The Secondaries of Solar‐Type Primaries. I. The Radial Velocities

2006 ◽  
Vol 162 (1) ◽  
pp. 207-226 ◽  
Author(s):  
Helmut A. Abt ◽  
Daryl Willmarth
Keyword(s):  
1992 ◽  
Vol 135 ◽  
pp. 82-88 ◽  
Author(s):  
Helmut A. Abt ◽  
Daryl W. Willmarth

AbstractFrom a new study of 113 F8-G1 IV or V primaries in an apparent-magnitude limited sample, measured with a CCD for about 20 radial velocities of accuracy 0.2-0.5 km s−1 each, we collected data for 28 binary orbits and 39 visual systems. We again found a flat distribution (or slightly decreasing toward lower masses) of secondary masses, unlike the Salpeter distribution for B2-B5 stars. But we find that the different distributions for these field stars and for open clusters of various ages can all be explained by a capture mechanism of binary formation.


1992 ◽  
Vol 135 ◽  
pp. 167-169 ◽  
Author(s):  
Kaylene Murdoch ◽  
J.B. Hearnshaw

AbstractWith a small telescope and conventional techniques we have achieved external radial-velocity errors for bright stars of only ±50 m/s by using an optical fibre feed between telescope and spectrograph. In a search for low-mass companions to solar-type dwarf stars, intrinsic radial-velocity variability was detected in some IAU radial-velocity standard stars but no convincing evidence was found of the presence of low-mass companions to the dwarfs.


1994 ◽  
Vol 212 (1-2) ◽  
pp. 271-280 ◽  
Author(s):  
R. S. Mcmillan ◽  
T. L. Moore ◽  
M. L. Perry ◽  
P. H. Smith

2020 ◽  
Vol 638 ◽  
pp. A54 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. Stellar variability due to magnetic activity and flows at different spatial scales strongly impacts radial velocities. This variability is seen as oscillations, granulation, supergranulation, and meridional flows. The effect of this latter process is currently poorly known but could affect exoplanet detectability. Aims. We aim to quantify the amplitude of the meridional flow integrated over the disc and its temporal variability, first for the Sun, as seen with different inclinations, and then for other solar-type stars. We then want to compare these amplitudes with low-mass exoplanetary amplitudes in radial velocity. Methods. We used long time series (covering two 11-yr cycles) of solar latitudinal meridional circulation to reconstruct its integrated contribution and study its properties. We then used scaling laws from hydrodynamical simulations relating the amplitude of the meridional flow variability with stellar mass and rotation rate to estimate the typical amplitude expected for other solar-type stars. Results. We find typical rms of the order of 0.5–0.7 m s−1 (edge-on) and 1.2–1.7 m s−1 (pole-on) for the Sun (peak-to-peak amplitudes are typically 1–1.4 m s−1 and 2.3–3.3 m s−1 resp.), with a minimal jitter for an inclination of 45–55°. This signal is significant compared to other stellar activity contributions and is much larger than the radial-velocity signal of the Earth. The variability is strongly related to the activity cycle, with maximum flows during the descending phase of the cycle, and possible variability on timescales lower than the cycle period. Extension to other solar-type stars shows that the variability due to meridional flows is dominated by the amplitude of the cycle of those stars (compared with mass and rotation rate), and that the peak-to-peak amplitudes can reach 4 m s−1 for the most variable stars when seen pole-on. The meridional flow contribution sometimes represents a high fraction of the convective blueshift inhibition signal, especially for quiet, low-mass stars. For fast-rotating stars, the presence of multi-cellular patterns should significantly decrease the meridional flow contribution to the radial-velocity signal. Conclusions. Our study shows that these meridional flows could be critical for exoplanet detection. Low inclinations are more impacted than edge-on configurations, but these latter still exhibit significant variability. Meridional flows also degrade the correlation between radial velocities due to convective blueshift inhibition and chromospheric activity indicators. This will make the correction from this signal challenging for stars with no multi-cellular patterns, such as the Sun for example, although there may be some configurations for which the line shape variations may be used if the precision is sufficient.


2020 ◽  
Vol 644 ◽  
pp. A104 ◽  
Author(s):  
K. G. Strassmeier ◽  
T. Granzer ◽  
M. Weber ◽  
R. Kuschnig ◽  
A. Pigulski ◽  
...  

Context. Knowing rotational and pulsational periods across the Hertzsprung-Russell diagram is of top priority for understanding stellar activity as a function of time. Aims. We aim to determine periods for bright stars in the Auriga field that are otherwise not easily accessible for ground-based photometry. Methods. Continuous photometry with up to three BRITE satellites was obtained for 12 targets and subjected to a period search. Contemporaneous high-resolution optical spectroscopy with STELLA was used to obtain radial velocities through cross correlation with template spectra as well as to determine astrophysical parameters through a comparison with model spectra. Results. The Capella red light curve was found to be constant over 176 days with a root mean square of 1 mmag, but the blue light curve showed a period of 10.1 ± 0.6 d, which we interpret to be the rotation period of the G0 component. From STELLA we obtained an improved orbital solution based on 9600 spectra from the previous 12.9 yr. We derive masses precise to ≈0.3% but 1% smaller than previously published. The BRITE light curve of the F0 supergiant ε Aur suggests 152 d as its main pulsation period, while the STELLA radial velocities reveal a clear 68 d period. An ingress of an eclipse of the ζ Aur binary system was covered with BRITE and a precise timing for its eclipse onset derived. A possible 70 d period fits the proposed tidal-induced, nonradial pulsations of this ellipsoidal K4 supergiant. η Aur is identified as a slowly pulsating B (SPB) star with a main period of 1.29 d and is among the brightest SPB stars discovered so far. The rotation period of the magnetic Ap star θ Aur is detected from photometry and spectroscopy with a period of 3.6189 d and 3.6177 d, respectively, likely the same within the errors. The radial velocities of this star show a striking non-sinusoidal shape with a large amplitude of 7 km s−1. Photometric rotation periods are also confirmed for the magnetic Ap star IQ Aur of 2.463 d and for the solar-type star κ1 Cet of 9.065 d, and also for the B7 HgMn giant β Tau of 2.74 d. Revised orbital solutions are derived for the eclipsing SB2 binary β Aur, which replaces the initial orbit dating from 1948 for the 27-year eclipsing SB1 ε Aur, and for the RS CVn binary V711 Tau, for which a spot-corrected orbital solution was achieved. The two stars ν Aur and ι Aur are found to be long-term, low-amplitude RV and brightness variables, but provisional orbital elements based on a period of 20 yr and an eccentricity of 0.7 could only be extracted for ν Aur. The variations of ι Aur are due to oscillations with a period of ≈4 yr.


2020 ◽  
Vol 641 ◽  
pp. A69 ◽  
Author(s):  
D. Baroch ◽  
J. C. Morales ◽  
I. Ribas ◽  
E. Herrero ◽  
A. Rosich ◽  
...  

Context. Variability caused by stellar activity represents a challenge to the discovery and characterization of terrestrial exoplanets and complicates the interpretation of atmospheric planetary signals. Aims. We aim to use a detailed modeling tool to reproduce the effect of active regions on radial velocity measurements, which aids the identification of the key parameters that have an impact on the induced variability. Methods. We analyzed the effect of stellar activity on radial velocities as a function of wavelength by simulating the impact of the properties of spots, shifts induced by convective motions, and rotation. We focused our modeling effort on the active star YZ CMi (GJ 285), which was photometrically and spectroscopically monitored with CARMENES and the Telescopi Joan Oró. Results. We demonstrate that radial velocity curves at different wavelengths yield determinations of key properties of active regions, including spot-filling factor, temperature contrast, and location, thus solving the degeneracy between them. Most notably, our model is also sensitive to convective motions. Results indicate a reduced convective shift for M dwarfs when compared to solar-type stars (in agreement with theoretical extrapolations) and points to a small global convective redshift instead of blueshift. Conclusions. Using a novel approach based on simultaneous chromatic radial velocities and light curves, we can set strong constraints on stellar activity, including an elusive parameter such as the net convective motion effect.


2018 ◽  
Vol 619 ◽  
pp. A81 ◽  
Author(s):  
J.-L. Halbwachs ◽  
M. Mayor ◽  
S. Udry

Context. The statistical properties of binary stars are clues for understanding their formation process. A radial velocity survey was carried on amongst nearby G-type stars and the results were published in 1991. Aims. The survey of radial velocity measurements was extended towards K-type stars. Methods. A sample of 261 K-type stars was observed with the spectrovelocimeter CORAVEL (COrrelation RAdial VELocities). Those stars with a variable radial velocity were detected on the basis of the P(Χ2) test. The orbital elements of the spectroscopic binaries were then derived. Results. The statistical properties of binary stars were derived from these observations and published in 2003. We present the catalogue of the radial velocity measurements obtained with CORAVEL for all the K stars of the survey and the orbital elements derived for 34 spectroscopic systems. In addition, the catalogue contains eight G-type spectroscopic binaries that have received additional measurements since 1991 and for which the orbital elements are revised or derived for the first time.


1997 ◽  
Vol 161 ◽  
pp. 707-709 ◽  
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

AbstractWe continued our search for partial (incomplete) Dyson spheres associated with 50 solar-type stars (spectral classes F, G, and K) within 25 pc of the Sun. No candidate objects were found.


Sign in / Sign up

Export Citation Format

Share Document