scholarly journals A Revisit of the Phase‐resolved X‐Ray and Gamma‐Ray Spectra of the Crab Pulsar

2008 ◽  
Vol 676 (1) ◽  
pp. 562-572 ◽  
Author(s):  
Anisia P. S. Tang ◽  
J. Takata ◽  
J. J. Jia ◽  
K. S. Cheng
Keyword(s):  
2012 ◽  
Vol 8 (S291) ◽  
pp. 322-322 ◽  
Author(s):  
Walid Majid

AbstractWe are currently undertaking a monitoring campaign with NASA 70-m antennas to capture a large sample of Crab Giant Pulses (CGP) at multiple radio wavelengths. The goal of this campaign is to carry out a correlation study of CGPs at radio frequencies with pulsed emission from the Crab pulsar with Fermi photons at X-ray. After a year of this study, we expect around 200 Fermi photons to coincide with a CGP radio-frequency detection, allowing us to either confirm a predicted correlation in average gamma-ray pulsed flux increase with GP emission, or place a tight upper limit, at least a factor of 10 more constraining than previous work. We will report on the status of this campaign and will present our preliminary results and prospects for future improvements in receivers and back-end instrumentation.


2017 ◽  
Vol 13 (S337) ◽  
pp. 191-194 ◽  
Author(s):  
Andrew Shearer ◽  
Eoin O’ Connor

AbstractDespite the early optical detection of the Crab pulsar in 1969, optical pulsars have become the poor cousin of the neutron star family. Only five normal pulsars have been observed to pulse in the optical waveband. A further three magnetars/SGRs have been detected in the optical/near IR. Optical pulsars are intrinsically faint with a first order luminosity, predicted by Pacini, to be proportional to P−10, where P is the pulsar’s period. Consequently they require both large telescopes, generally over-subscribed, and long exposure times, generally difficult to get. However optical observations have the benefit that polarisation and spectral observations are possible compared to X-ray and gamma-ray observations where polarisation measurements are limited. Over the next decade the number of optical pulsars should increase as optical detectors approach 100% quantum efficiency and as we move into the era of extremely large telescopes where limiting fluxes will be 30 to 100 times fainter compared to existing optical telescopes.


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-367-C9-370
Author(s):  
C. B. COLLINS ◽  
F. DAVANLOO ◽  
T. S. BOWEN ◽  
J. J. COOGAN
Keyword(s):  

2003 ◽  
Vol 8 (5-6) ◽  
pp. 60-64
Author(s):  
A.I. Arkhangelsky ◽  
◽  
Yu.D. Kotov ◽  
P.Yu. Chistiakov ◽  
◽  
...  

1998 ◽  
Vol 502 (1) ◽  
pp. 428-436 ◽  
Author(s):  
Igor V. Moskalenko ◽  
Werner Collmar ◽  
Volker Schonfelder

1996 ◽  
Vol 165 ◽  
pp. 313-319
Author(s):  
Mark H. Finger ◽  
Robert B. Wilson ◽  
B. Alan Harmon ◽  
William S. Paciesas

A “giant” outburst of A 0535+262, a transient X-ray binary pulsar, was observed in 1994 February and March with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory. During the outburst power spectra of the hard X-ray flux contained a QPO-like component with a FWHM of approximately 50% of its center frequency. Over the course of the outburst the center frequency rose smoothly from 35 mHz to 70 mHz and then fell to below 40 mHz. We compare this QPO frequency with the neutron star spin-up rate, and discuss the observed correlation in terms of the beat frequency and Keplerian frequency QPO models in conjunction with the Ghosh-Lamb accretion torque model.


2021 ◽  
Vol 366 (4) ◽  
Author(s):  
Zhi-Ying Liu ◽  
Fu-Wen Zhang ◽  
Si-Yuan Zhu

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2021 ◽  
Vol 502 (4) ◽  
pp. 4680-4688
Author(s):  
Ankan Sur ◽  
Brynmor Haskell

ABSTRACT In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up to 1 M⊙, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at 1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M⊙ and emits gravitational waves with a lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with the X-ray plateau observed in the light curve of a number of short gamma-ray burst.


Sign in / Sign up

Export Citation Format

Share Document