scholarly journals Discovery of Superstrong, Fading, Iron Line Emission and Double-peaked Balmer Lines of the Galaxy SDSS J095209.56+214313.3: The Light Echo of a Huge Flare

2008 ◽  
Vol 678 (1) ◽  
pp. L13-L16 ◽  
Author(s):  
S. Komossa ◽  
H. Zhou ◽  
T. Wang ◽  
M. Ajello ◽  
J. Ge ◽  
...  
2007 ◽  
Vol 16 (12b) ◽  
pp. 2399-2405 ◽  
Author(s):  
FRANCESC FERRER ◽  
TANMAY VACHASPATI

Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 keV gamma ray line emission from the bulge, which requires an intense source of positrons in the galactic center. These observations are hard to account for by conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma ray background. Here we suggest that light superconducting strings could be the source of the observed 511 keV emission. The associated particle physics, at the ~ 1 TeV scale, is within the reach of planned accelerator experiments, while the distinguishing spatial distribution, proportional to the galactic magnetic field, could be mapped by SPI or by future, more sensitive satellite missions.


2006 ◽  
Vol 453 (1) ◽  
pp. L13-L16 ◽  
Author(s):  
L. Miller ◽  
T. J. Turner ◽  
J. N. Reeves ◽  
I. M. George ◽  
D. Porquet ◽  
...  
Keyword(s):  

Author(s):  
Steven J. Gibson ◽  
Ward S. Howard ◽  
Christian S. Jolly ◽  
Jonathan H. Newton ◽  
Aaron C. Bell ◽  
...  

AbstractWe have mapped cold atomic gas in 21cm line H i self-absorption (HISA) at arcminute resolution over more than 90% of the Milky Way's disk. To probe the formation of H2 clouds, we have compared our HISA distribution with CO J = 1-0 line emission. Few HISA features in the outer Galaxy have CO at the same position and velocity, while most inner-Galaxy HISA has overlapping CO. But many apparent inner-Galaxy HISA-CO associations can be explained as chance superpositions, so most inner-Galaxy HISA may also be CO-free. Since standard equilibrium cloud models cannot explain the very cold H i in many HISA features without molecules being present, these clouds may instead have significant CO-dark H2.


1998 ◽  
Vol 179 ◽  
pp. 237-237 ◽  
Author(s):  
D. Leisawitz ◽  
S.W. Digel ◽  
S. Geitz

The Astrophysics Data Facility at NASA Goddard Space Flight Center supports the processing, management, and dissemination of data obtained by past, current, and future NASA and international astrophysics missions, and promotes the effective use of those data by the astrophysics community, educators, and the public. Our Multiwavelength Milky Way poster was printed for broad distribution. It depicts the Galaxy at radio, infrared, optical, X-ray, and gamma-ray wavelengths. In particular, the poster contains images of the Galactic 21-cm and CO (J = 1 → 0) line emission, and IRAS 12, 60, and 100 μm, COBE/DIRBE 1.25, 2.2, and 3.5 μm, Digitized Sky Survey optical wavelength, ROSAT/PSPC 0.25, 0.75, and 1.5 keV X-ray, and CGRO/EGRET E > 100 MeV gamma ray broadband emission. All of the data sets are publicly available. Captions describe the Milky Way and what can be learned about the Galaxy from measurements made in each segment of the electromagnetic spectrum. The poster is intended to be an educational tool, one that will stimulate heightened awareness by laypersons of NASA's contribution to modern astronomy.Through an interface available on the World Wide Web at http://adf.gsfc.nasa.gov/adf/adf.html one may view the images that appear on the poster, read the poster captions, and locate the archived data and references.


1996 ◽  
Vol 169 ◽  
pp. 437-446 ◽  
Author(s):  
Hans Bloemen

Gamma-ray astronomy has become a rich field of research and matured significantly since the launch of NASA's Compton Gamma Ray Observatory in April 1991. Studies of the diffuse γ-ray emission of the Galaxy can now be performed in far more detail and extended into the MeV regime, including both continuum and line emission. These studies provide unique insight into various aspects of the interstellar medium, in particular of the cosmic-ray component. This paper gives a brief review on the diffuse Galactic γ-ray emission and summarizes early results and prospects from the Compton Observatory.


2019 ◽  
Vol 487 (3) ◽  
pp. 4153-4168 ◽  
Author(s):  
Joshua J D’Agostino ◽  
Lisa J Kewley ◽  
Brent A Groves ◽  
Anne M Medling ◽  
Enrico Di Teodoro ◽  
...  

ABSTRACT In the optical spectra of galaxies, the separation of line emission from gas ionized by star formation and an active galactic nucleus (AGN), or by star formation and shocks, are very well-understood problems. However, separating line emission between AGN and shocks has proven difficult. With the aid of a new three-dimensional diagnostic diagram, we show the simultaneous separation of line emission from star formation, shocks, and AGN in NGC 1068, and quantify the ratio of star formation, shocks, and AGN in each spaxel. The AGN, shock, and star formation luminosity distributions across the galaxy accurately align with X-ray, radio, and CO(3–2) observations, respectively. Comparisons with previous separation methods show that the shocked emission heavily mixes with the AGN emission. We also show that if the H α flux is to be used as a star formation rate indicator, separating line emission from as many sources as possible should be attempted to ensure accurate results.


1978 ◽  
Vol 226 ◽  
pp. 282 ◽  
Author(s):  
H. L. Kestenbaum ◽  
W. H.-M. Ku ◽  
K. S. Long ◽  
E. H. Silver ◽  
R. Novick

1993 ◽  
Vol 404 ◽  
pp. 620 ◽  
Author(s):  
Shigeo Yamauchi ◽  
Katsuji Koyama
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document