Anther Wall Development, Microsporogenesis, and Microgametogenesis inAbolbodaandOrectanthe: Contributions to the Embryology of Xyridaceae (Poales)

2015 ◽  
Vol 176 (4) ◽  
pp. 324-332 ◽  
Author(s):  
Aline Oriani ◽  
Vera L. Scatena
2006 ◽  
Vol 54 (1) ◽  
pp. 83 ◽  
Author(s):  
Carolina Carrizo García ◽  
Gloria E. Barboza

Development of the anther wall and its structure at maturity in wild tomatoes (Solanum sect. Lycopersicon) are described, and the features are discussed in relation to anther dehiscence and the buzz-pollination mechanism. The anther wall formation follows two different patterns in the same microsporangia and a high number of cells divisions may occur. The number of layers formed varies across the ventral, dorsal and lateral surfaces of each theca. Large epidermal cells develop, lining the stomium, and they could possibly be involved in stomium opening. Cells with thickenings are formed in the apical fifth of the anther, where the tissues seem to degenerate after the stomium opening, forming a wider aperture through which the pollen can be shed. The multilayered dorsal wall remains swollen and could act as an attractant to pollinators and as mechanical support. The apparently disordered anther wall development sets up different structures across and along the anther, which can be interpreted as histological adaptations to the buzz-pollination mechanism.


2010 ◽  
Vol 70 (2) ◽  
pp. 351-360 ◽  
Author(s):  
AT. Nakamura ◽  
HM. Longhi-Wagner ◽  
VL. Scatena

Anther and pollen development were studied in Olyra humilis Nees, Sucrea monophylla Soderstr, (Bambusoideae), Axonopus aureus P. Beauv., Paspalum polyphyllum Nees ex Trin. (Panicoideae), Eragrostis solida Nees, and Chloris elata Desv. (Chloridoideae). The objective of this study was to characterise, embryologically, these species of subfamilies which are considered basal, intermediate and derivate, respectively. The species are similar to each other and to other Poaceae. They present the following characters: tetrasporangiate anthers; monocotyledonous-type anther wall development, endothecium showing annular thickenings, secretory tapetum; successive microsporogenesis; isobilateral tetrads; spheroidal, tricellular, monoporate pollen grains with annulus and operculum. Nevertheless, the exine patterns of the species studied are distinct. Olyra humilis and Sucrea monophylla (Bambusoideae) show a granulose pattern, whereas in the other species, it is insular. In addition, Axonopus aureus and Paspalum polyphyllum (Panicoideae) have a compactly insular spinule pattern, while Chloris elata and Eragrostis solida (Chloridoideae) show a sparsely insular spinule pattern. The exine ornamentation may be considered an important feature at the infrafamiliar level.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Saori Araki ◽  
Ngoc Tu Le ◽  
Koji Koizumi ◽  
Alejandro Villar-Briones ◽  
Ken-Ichi Nonomura ◽  
...  

2021 ◽  
Author(s):  
Woo-Jong Hong ◽  
Su Kyoung Lee ◽  
Seok-Hui Kim ◽  
Yu-Jin Kim ◽  
Sunok Moon ◽  
...  

Abstract Rice is an important food staple that is consumed by half of the human population. Therefore, understanding the regulatory mechanism of male fertility in rice can improve production by enhancing the efficiency of hybrid seed production. However, information on the control mechanism of male fertility by anther dehiscence or wall development in rice is very limited. To further understand the regulatory mechanism for anther dehiscence in rice, we carried out transcriptome analysis for two tissues: the anther wall and pollen at the anthesis stage. With the anatomical meta-expression data, in addition to these tissues, the differentially expressed genes (DEGs) between the two tissues were further refined to identify 1,717 pollen-preferred genes and 534 anther wall-preferred genes. A GUS transgenic line and RT-qPCR analysis for anther wall-preferred genes supported the fidelity of our gene candidates for further analysis. The refined DEGs were functionally classified through Gene Ontology (GO) enrichment and MapMan analyses. Through the analysis of cis-acting elements and alternative splicing variants, we also suggest the feature of regulatory sequences in promoter regions for anther wall-preferred expression and provide information of the unique splicing variants in anther walls. Subsequently, it was found that hormone signaling and the resulting transcriptional regulation pathways may play an important role in anther dehiscence and anther wall development. Our result could provide useful insight for future research to broaden the molecular mechanism of anther dehiscence or anther wall development in rice.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Yanina de Jesús Pérez ◽  
Maria Betiana Angulo ◽  
Ana Honfi ◽  
Massimiliano Dematteis

Abstract Lessingianthus plantaginoides (Vernonieae, Asteraceae) is a small natural tetraploid shrub that inhabits rocky highlands from South America. The population studied inhabits and covers an extensive region of a private reserve with high local biodiversity and animal and plant endemisms. With the purpose of providing insights into the cyto-embryology of this tetraploid species, the aims of this study were: to perform an ontogenetic study of the male and female gametophytes of L. plantaginoides; to carry out detailed meiotic analysis and evaluate the fertility of this species; to document and provide highlights on taxonomic implications of their reproductive aspects. Lessingianthus plantaginoides presented the following male and female gametophyte traits: dicotyledonous type of anther wall development, tetrahedral tetrads, 3-celled mature pollen grains; development of the chalazal megaspore, monosporic embryo sac and Polygonum type of megagametophyte development. The meiotic behavior was regular, the spores were tetrads of equal size and the pollen grains were highly stainable. Lessingianthus plantaginoides is a highly diplodized autotetraploid that reproduces sexually and has high meiotic regularity; which is apparently responsible for its colonization potential. It now seems certain that polyploid speciation plays a significant role in the establishment and diversification of the genus.


Sign in / Sign up

Export Citation Format

Share Document