body plan evolution
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Sujian Tan ◽  
Pin Huan ◽  
Baozhong Liu

AbstractThe molecular mechanisms of dorsal-ventral (DV) patterning in Spiralia are poorly understood. The few available studies indicate that derived DV patterning mechanisms occurred in particular spiralian lineages and likely were related to the loss of Chordin gene. Here, a functional study of the first spiralian Chordin showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, thus revealing the first spiralian case that retains this conserved mechanism. We then showed that Chordin but not BMP2/4 transferred the positional information of the D-quadrant organizer to establish the BMP signaling gradient along the presumed DV axis. Further investigations on the molluscan embryos with influenced DV patterning suggested a role of BMP signaling in regulating the organization of the larval nervous system and indicated that the blastopore localization is correlated with the BMP signaling gradient. These findings provide insights into the evolution of animal DV patterning, the unique development mode of spiralians driven by the D-quadrant organizer, and the evolution of bilaterian body plans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Judith M. Pardo-Pérez ◽  
Benjamin P. Kear ◽  
Erin E. Maxwell

2019 ◽  
Vol 286 (1898) ◽  
pp. 20182786 ◽  
Author(s):  
Susana Gutarra ◽  
Benjamin C. Moon ◽  
Imran A. Rahman ◽  
Colin Palmer ◽  
Stephan Lautenschlager ◽  
...  

Ichthyosaurs are an extinct group of fully marine tetrapods that were well adapted to aquatic locomotion. During their approximately 160 Myr existence, they evolved from elongate and serpentine forms into stockier, fish-like animals, convergent with sharks and dolphins. Here, we use computational fluid dynamics (CFD) to quantify the impact of this transition on the energy demands of ichthyosaur swimming for the first time. We run computational simulations of water flow using three-dimensional digital models of nine ichthyosaurs and an extant functional analogue, a bottlenose dolphin, providing the first quantitative evaluation of ichthyosaur hydrodynamics across phylogeny. Our results show that morphology did not have a major effect on the drag coefficient or the energy cost of steady swimming through geological time. We show that even the early ichthyosaurs produced low levels of drag for a given volume, comparable to those of a modern dolphin, and that deep ‘torpedo-shaped’ bodies did not reduce the cost of locomotion. Our analysis also provides important insight into the choice of scaling parameters for CFD applied to swimming mechanics, and underlines the great influence of body size evolution on ichthyosaur locomotion. A combination of large bodies and efficient swimming modes lowered the cost of steady swimming as ichthyosaurs became increasingly adapted to a pelagic existence.


2018 ◽  
Vol 49 (1) ◽  
pp. 499-522 ◽  
Author(s):  
Frietson Galis ◽  
Johan A.J. Metz ◽  
Jacques J.M. van Alphen

We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.


2018 ◽  
Vol 285 (1881) ◽  
pp. 20180296 ◽  
Author(s):  
Pei-Yun Cong ◽  
Thomas H. P. Harvey ◽  
Mark Williams ◽  
David J. Siveter ◽  
Derek J. Siveter ◽  
...  

Chancelloriids are an extinct group of spiny Cambrian animals of uncertain phylogenetic position. Despite their sponge-like body plan, their spines are unlike modern sponge spicules, but share several features with the sclerites of certain Cambrian bilaterians, notably halkieriids. However, a proposed homology of these ‘coelosclerites' implies complex transitions in body plan evolution. A new species of chancelloriid, Allonnia nuda , from the lower Cambrian (Stage 3) Chengjiang Lagerstätte is distinguished by its large size and sparse spination, with modified apical sclerites surrounding an opening into the body cavity. The sclerite arrangement in A. nuda and certain other chancelloriids indicates that growth involved sclerite addition in a subapical region, thus maintaining distinct zones of body sclerites and apical sclerites. This pattern is not seen in halkieriids, but occurs in some modern calcarean sponges. With scleritome assembly consistent with a sponge affinity, and in the absence of cnidarian- or bilaterian-grade features, it is possible to interpret chancelloriids as sponges with an unusually robust outer epithelium, strict developmental control of body axis formation, distinctive spicule-like structures and, by implication, minute ostia too small to be resolved in fossils. In this light, chancelloriids may contribute to the emerging picture of high disparity among early sponges.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2594 ◽  
Author(s):  
Lucília S. Miranda ◽  
Allen G. Collins ◽  
Yayoi M. Hirano ◽  
Claudia E. Mills ◽  
Antonio C. Marques

Comparative efforts to understand the body plan evolution of stalked jellyfishes are scarce. Most characters, and particularly internal anatomy, have neither been explored for the class Staurozoa, nor broadly applied in its taxonomy and classification. Recently, a molecular phylogenetic hypothesis was derived for Staurozoa, allowing for the first broad histological comparative study of staurozoan taxa. This study uses comparative histology to describe the body plans of nine staurozoan species, inferring functional and evolutionary aspects of internal morphology based on the current phylogeny of Staurozoa. We document rarely-studied structures, such as ostia between radial pockets, intertentacular lobules, gametoducts, pad-like adhesive structures, and white spots of nematocysts (the last four newly proposed putative synapomorphies for Staurozoa). Two different regions of nematogenesis are documented. This work falsifies the view that the peduncle region of stauromedusae only retains polypoid characters; metamorphosis from stauropolyp to stauromedusa occurs both at the apical region (calyx) and basal region (peduncle). Intertentacular lobules, observed previously in only a small number of species, are shown to be widespread. Similarly, gametoducts were documented in all analyzed genera, both in males and females, thereby elucidating gamete release. Finally, ostia connecting adjacent gastric radial pockets appear to be universal for Staurozoa. Detailed histological studies of medusozoan polyps and medusae are necessary to further understand the relationships between staurozoan features and those of other medusozoan cnidarians.


2014 ◽  
Vol 54 (4) ◽  
pp. 658-666 ◽  
Author(s):  
D. C. Lyons ◽  
M. Q. Martindale ◽  
M. Srivastava

Sign in / Sign up

Export Citation Format

Share Document