scholarly journals THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

2012 ◽  
Vol 758 (2) ◽  
pp. 73 ◽  
Author(s):  
Amélie Saintonge ◽  
Linda J. Tacconi ◽  
Silvia Fabello ◽  
Jing Wang ◽  
Barbara Catinella ◽  
...  
2020 ◽  
Vol 499 (4) ◽  
pp. 5749-5764 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan

ABSTRACT Optical diagnostic diagrams are powerful tools to separate different ionizing sources in galaxies. However, the model-constraining power of the most widely used diagrams is very limited and challenging to visualize. In addition, there have always been classification inconsistencies between diagrams based on different line ratios, and ambiguities between regions purely ionized by active galactic nuclei (AGNs) and composite regions. We present a simple reprojection of the 3D line ratio space composed of [N ii]λ6583/H α, [S ii]λλ6716, 6731/H α, and [O iii]λ5007/H β, which reveals its model-constraining power and removes the ambiguity for the true composite objects. It highlights the discrepancy between many theoretical models and the data loci. With this reprojection, we can put strong constraints on the photoionization models and the secondary nitrogen abundance prescription. We find that a single nitrogen prescription cannot fit both the star-forming locus and AGN locus simultaneously, with the latter requiring higher N/O ratios. The true composite regions stand separately from both models. We can compute the fractional AGN contributions for the composite regions, and define demarcations with specific upper limits on contamination from AGN or star formation. When the discrepancy about nitrogen prescriptions gets resolved in the future, it would also be possible to make robust metallicity measurements for composite regions and AGNs.


2019 ◽  
Vol 15 (S359) ◽  
pp. 185-187
Author(s):  
Fiorella L. Polles

AbstractMulti-phase filamentary structures surrounding giant elliptical galaxies at the center of cool-core clusters, the Brightest Cluster Galaxies (BCGs), have been detected from optical to submillimeter wavelengths. The source of the ionisation in the filaments is still debated. Studying the excitation of these structures is key to our understanding of Active Galactic Nuclei (AGN) feedback in general, and more precisely of the impact of environmental and local effects on star formation. One possible contributor to the excitation of the filaments is the thermal radiation from the cooling of the hot plasma surrounding the BCGs, the so-called cooling flow.


Author(s):  
C.-E. Green ◽  
M. R. Cunningham ◽  
J. A. Green ◽  
J. R. Dawson ◽  
P. A. Jones ◽  
...  

AbstractThe intensity ratios of HCO+/HCN and HNC/HCN (1-0) reveal the relative influence of star formation and active galactic nuclei (AGN) or black holes on the circum-nuclear gas of a galaxy, allowing the identification of X-ray dominated regions (XDRs) and Photon-dominated regions (PDRs). It is not always clear in the literature how this intensity ratio calculation has been, or should be performed. This paper discusses ratio calculation methods for interferometric data.


2020 ◽  
Vol 899 (1) ◽  
pp. L9
Author(s):  
Jenny E. Greene ◽  
David Setton ◽  
Rachel Bezanson ◽  
Katherine A. Suess ◽  
Mariska Kriek ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3594-3612
Author(s):  
P F Rohde ◽  
S Walch ◽  
S D Clarke ◽  
D Seifried ◽  
A P Whitworth ◽  
...  

ABSTRACT The accretion of material on to young protostars is accompanied by the launching of outflows. Observations show that accretion, and therefore also outflows, are episodic. However, the effects of episodic outflow feedback on the core scale are not well understood. We have performed 88 smoothed particle hydrodynamic simulations of turbulent dense $1 \, {{\mathrm{M}}}_{\odot }$ cores to study the influence of episodic outflow feedback on the stellar multiplicity and the star formation efficiency (SFE). Protostars are represented by sink particles, which use a subgrid model to capture stellar evolution, inner-disc evolution, episodic accretion, and the launching of outflows. By comparing simulations with and without episodic outflow feedback, we show that simulations with outflow feedback reproduce the binary statistics of young stellar populations, including the relative proportions of singles, binaries, triples, etc. and the high incidence of twin binaries with q ≥ 0.95; simulations without outflow feedback do not. Entrainment factors (the ratio between total outflowing mass and initially ejected mass) are typically ∼7 ± 2, but can be much higher if the total mass of stars formed in a core is low and/or outflow episodes are infrequent. By decreasing both the mean mass of the stars formed and the number of stars formed, outflow feedback reduces the SFE by about a factor of 2 (as compared with simulations that do not include outflow feedback).


2014 ◽  
Vol 790 (1) ◽  
pp. 15 ◽  
Author(s):  
L. Sargsyan ◽  
A. Samsonyan ◽  
V. Lebouteiller ◽  
D. Weedman ◽  
D. Barry ◽  
...  

2009 ◽  
Vol 696 (1) ◽  
pp. 396-410 ◽  
Author(s):  
J. D. Silverman ◽  
F. Lamareille ◽  
C. Maier ◽  
S. J. Lilly ◽  
V. Mainieri ◽  
...  

Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 24 ◽  
Author(s):  
José-María Martí

Numerical simulations have been playing a crucial role in the understanding of jets from active galactic nuclei (AGN) since the advent of the first theoretical models for the inflation of giant double radio galaxies by continuous injection in the late 1970s. In the almost four decades of numerical jet research, the complexity and physical detail of simulations, based mainly on a hydrodynamical/magneto-hydrodynamical description of the jet plasma, have been increasing with the pace of the advance in theoretical models, computational tools and numerical methods. The present review summarizes the status of the numerical simulations of jets from AGNs, from the formation region in the neighborhood of the supermassive central black hole up to the impact point well beyond the galactic scales. Special attention is paid to discuss the achievements of present simulations in interpreting the phenomenology of jets as well as their current limitations and challenges.


2019 ◽  
Vol 489 (2) ◽  
pp. 2572-2594 ◽  
Author(s):  
Mengtao Tang ◽  
Daniel P Stark ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT Galaxies in the reionization era have been shown to have prominent [O iii] + H β emission. Little is known about the gas conditions and radiation field of this population, making it challenging to interpret the spectra emerging at z ≳ 6. Motivated by this shortcoming, we have initiated a large MMT spectroscopic survey identifying rest-frame optical emission lines in 227 intense [O iii] emitting galaxies at 1.3 < z < 2.4. This sample complements the MOSDEF and KBSS surveys, extending to much lower stellar masses ($10^7\!-\!10^8 \, \mathrm{M}_\odot$) and larger specific star formation rates (5–300 Gyr−1), providing a window on galaxies directly following a burst or recent upturn in star formation. The hydrogen ionizing production efficiency (ξion) is found to increase with the [O iii] equivalent width (EW), in a manner similar to that found in local galaxies. We describe how this relationship helps explain the anomalous success rate in identifying Ly α emission in z ≳ 7 galaxies with strong [O iii] + H β emission. We probe the impact of the intense radiation field on the ISM using O32 and Ne3O2, two ionization-sensitive indices. Both are found to scale with the [O iii] EW, revealing extreme ionization conditions not commonly seen in older and more massive galaxies. In the most intense line emitters, the indices have very large average values (O32 = 9.1, Ne3O2 = 0.5) that have been shown to be linked to ionizing photon escape. We discuss implications for the nature of galaxies most likely to have O32 values associated with significant LyC escape. Finally we consider the optimal strategy for JWST spectroscopic investigations of galaxies at z ≳ 10 where the strongest rest-frame optical lines are no longer visible with NIRSpec.


Sign in / Sign up

Export Citation Format

Share Document