scholarly journals DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

2013 ◽  
Vol 773 (1) ◽  
pp. 67 ◽  
Author(s):  
Subhashis Roy
2013 ◽  
Vol 9 (S303) ◽  
pp. 119-120
Author(s):  
Subhashis Roy

AbstractWe have detected 62 compact likely extragalactic sources in the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope (GMRT). Their scattering sizes go down linearly with angular distance from the GC up to about 1°. These are more than 10 times lower than the proposed Hyperstrong scattering model within 0.5° from the GC. We also detect 7 out of 10 EG sources expected in the region from existing catalogs. Ionized interfaces of dense molecular clouds to the ambient medium are likely responsible for strong scattering. However, dense GC clouds traced by CS J = (1 − 0) emission are found to have a narrow distribution of ∼0.2° across the Galactic plane. Lack of strong scattering towards EG sources within ∼ 0.5° from GC with |b| ≳ 0.2° could explain our results.


2018 ◽  
Vol 6 (2) ◽  
pp. 130-145
Author(s):  
Adekanmbi M ◽  
Abumere E.O ◽  
Amusan J.A

Light has been generated through Plasma using radio frequency source in 4Ft 40W disused fluorescent tube. As against the thermionic and incandescence source of running a fluorescent tube which is actually difficult to get started due to the resistance of the gases enclosed inside, a Radio Frequency signal of 30MHz  generated using a designed Hartley Oscillator is employed. The power of the signal generated is amplified from 231mW to 197.8W using a modeled inverter. The coupled Hartley oscillator and the inverter form an ionizing circuit. The gases inside fluorescent tube consist of mercury Vapor, argon, krypton or Neon. When sufficient energy is supplied to these gases, by the ionizing circuit, ionization and excitation takes place which makes otherwise neutral gases, to change state to a cloud of ionized gas called Plasma. When excited electrons in the gases return to the ground state they lose energy in packets called Photon. This Photon is ultraviolet light which is not visible to the human eye but when it strikes the walls of the tube coated with Phosphor it glows whereby light is generated. The high electric field Radio frequency circuit designed has generated light in a fluorescent tube without the use of starter and ballast. It has also generated light in otherwise “dead” or disused fluorescent bulbs.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


1989 ◽  
Vol 136 ◽  
pp. 379-382
Author(s):  
P. T. P. Ho ◽  
J. M. Jackson ◽  
J. T. Armstrong ◽  
J. C. Szczepanski

VLA observations in the (J, K)=(3,3) line of ammonia reveal new structures in the Galactic center region. An approximate ring of emission is centered on the central ionized streamers. This ring, seen previously in millimeter-wave interferometer maps, is very clumpy in the ammonia emission, with size scales ≲10″ (0.4 pc). The clumps show good spatial and velocity agreement with the ionized gas, and are warm with brightness temperatures exceeding 30 K. A comparison of the (3,3) to (1,1) ratio indicates considerably higher gas temperatures. This circumnuclear ring may not be the dominant feature in the mass distribution of the circumnuclear gas. A streamer, immediately to the south of the Galactic center, connects the gas complex at lII= −4′ (~10 pc) directly to the Galactic center. This streamer may define the path for gas flow into the nuclear region.


1998 ◽  
Vol 184 ◽  
pp. 321-324
Author(s):  
A.M. Fridman ◽  
V.V. Lyakhovich ◽  
O.V. Khoruzhii ◽  
O.K. Silchenko

The Fourier analysis of the observed velocity field of ionized gas in the inner 1.5 pc of the Galactic Center (obtained by Roberts and Goss, 1993) is made. As follows from the analysis, the observed field of residual velocities is dominated by the second Fourier harmonic. This fact can be treated as a consequence of the presence of an one-armed density wave with the density maximum along the Northern Arm plus the Western Arc structure. The wave nature of this structure is proved on the base of the behaviour of the phase of the second harmonic of line-of-sight velocity field in the whole region. The Fourier analysis shows also the presence of systematic radial velocity. We consider this flow as a quasi-stationary radial drift caused by one-armed nonlinear density wave (‘mini-spiral’).


2016 ◽  
Vol 11 (S322) ◽  
pp. 21-24
Author(s):  
Elena Murchikova

AbstractThe submm Hydrogen recombination line technique can be used as a probe of the Galactic Center. We present the results of our H30α observations of ionized gas from within 0.015 pc around SgrA*. The observations were obtained on ALMA in cycle 3. The line was not detected, but we were able to set a limit on the mass of the cool gas (T~ 104 K) at 2 × 10−3M⊙. This is the unique probe of gas cooler than T ~106 K traced by X-ray emission. The total amount of gas near SgrA* gives us clues to understanding the accretion rate of SgrA*.


Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract We detected a compact ionized gas associated physically with IRS13E3, an intermediate mass black hole (IMBH) candidate in the Galactic center, in the continuum emission at 232 GHz and H30α recombination line using ALMA Cy.5 observation (2017.1.00503.S, P.I. M.Tsuboi). The continuum emission image shows that IRS13E3 is surrounded by an oval-like structure. The angular size is 0${^{\prime\prime}_{.}}$093 ± 0${^{\prime\prime}_{.}}$006 × 0${^{\prime\prime}_{.}}$061 ± 0${^{\prime\prime}_{.}}$004 (1.14 × 1016 cm × 0.74 × 1016 cm). The structure is also identified in the H30α recombination line. This is seen as an inclined linear feature in the position–velocity diagram, which is usually a defining characteristic of a rotating gas ring around a large mass. The gas ring has a rotating velocity of Vrot ≃ 230 km s−1 and an orbit radius of r ≃ 6 × 1015 cm. From these orbit parameters, the enclosed mass is estimated to be $M_{\mathrm{IMBH}}\simeq 2.4\times 10^{4}\, M_{\odot }$. The mass is within the astrometric upper limit mass of the object adjacent to Sgr A*. Considering IRS13E3 has an X-ray counterpart, the large enclosed mass would be supporting evidence that IRS13E3 is an IMBH. Even if a dense cluster corresponds to IRS13E3, the cluster would collapse into an IMBH within τ < 107 yr due to the very high mass density of $\rho \gtrsim 8\times 10^{11}\, M_{\odot }\:$pc−3. Because the orbital period is estimated to be as short as T = 2πr/Vrot ∼ 50–100 yr, the morphology of the observed ionized gas ring is expected to be changed in the next several decades. The mean electron temperature and density of the ionized gas are $\bar{T}_{\mathrm{e}}=6800\pm 700\:$K and $\bar{n}_{\mathrm{e}}=6\times 10^{5}\:$cm−3, respectively. Then the mass of the ionized gas is estimated to be $M_{\mathrm{gas}}=4\times 10^{-4}\, M_{\odot }$.


1989 ◽  
Vol 136 ◽  
pp. 159-166 ◽  
Author(s):  
K. R. Anantharamaiah ◽  
Farhad Yusef-Zadeh

Preliminary results of a systematic survey of H78α, H91α and H98β emission from the inner 40′ of the Galactic center region are presented. This region consists of two prominent continuum features, the Sgr A complex and the radio continuum Arc. In spite of much nonthermal emission arising from these two features, we detected strong line emission with large line widths in more than half of the observed 130 positions. Many of the detections are new, in particular −50 km s−1 ionized gas linking the Sgr A complex and the Arc, β line emission from GO.1+0.08 (the arched filaments), and α line emission from the loop-like structures which surround the non-thermal filaments near G0.2−0.05. We find that much of the detected lines are probably associated with the −50 km s−1 and the 20 km s−1 molecular clouds, known to lie near the Galactic center. We present line profiles of a number of Galactic center sources including Sgr B1, Sgr C and Sgr D.


Sign in / Sign up

Export Citation Format

Share Document