Ionized Gas in the Direction of the Galactic Center I: Kinematics and Physical Conditions in the Nuclear Disk

Author(s):  
P. G. Mezger ◽  
E. B. Churchwel ◽  
T. A. Pauls
2019 ◽  
Vol 626 ◽  
pp. A23 ◽  
Author(s):  
D. Cormier ◽  
N. P. Abel ◽  
S. Hony ◽  
V. Lebouteiller ◽  
S. C. Madden ◽  
...  

The sensitive infrared telescopes, Spitzer and Herschel, have been used to target low-metallicity star-forming galaxies, allowing us to investigate the properties of their interstellar medium (ISM) in unprecedented detail. Interpretation of the observations in physical terms relies on careful modeling of those properties. We have employed a multiphase approach to model the ISM phases (H II region and photodissociation region) with the spectral synthesis code Cloudy. Our goal is to characterize the physical conditions (gas densities, radiation fields, etc.) in the ISM of the galaxies from the Herschel Dwarf Galaxy Survey. We are particularly interested in correlations between those physical conditions and metallicity or star-formation activity. Other key issues we have addressed are the contribution of different ISM phases to the total line emission, especially of the [C II]157 μm line, and the characterization of the porosity of the ISM. We find that the lower-metallicity galaxies of our sample tend to have higher ionization parameters and galaxies with higher specific star-formation rates have higher gas densities. The [C II] emission arises mainly from PDRs and the contribution from the ionized gas phases is small, typically less than 30% of the observed emission. We also find a correlation – though with scatter – between metallicity and both the PDR covering factor and the fraction of [C II] from the ionized gas. Overall, the low metal abundances appear to be driving most of the changes in the ISM structure and conditions of these galaxies, and not the high specific star-formation rates. These results demonstrate in a quantitative way the increase of ISM porosity at low metallicity. Such porosity may be typical of galaxies in the young Universe.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


1989 ◽  
Vol 136 ◽  
pp. 379-382
Author(s):  
P. T. P. Ho ◽  
J. M. Jackson ◽  
J. T. Armstrong ◽  
J. C. Szczepanski

VLA observations in the (J, K)=(3,3) line of ammonia reveal new structures in the Galactic center region. An approximate ring of emission is centered on the central ionized streamers. This ring, seen previously in millimeter-wave interferometer maps, is very clumpy in the ammonia emission, with size scales ≲10″ (0.4 pc). The clumps show good spatial and velocity agreement with the ionized gas, and are warm with brightness temperatures exceeding 30 K. A comparison of the (3,3) to (1,1) ratio indicates considerably higher gas temperatures. This circumnuclear ring may not be the dominant feature in the mass distribution of the circumnuclear gas. A streamer, immediately to the south of the Galactic center, connects the gas complex at lII= −4′ (~10 pc) directly to the Galactic center. This streamer may define the path for gas flow into the nuclear region.


1998 ◽  
Vol 184 ◽  
pp. 321-324
Author(s):  
A.M. Fridman ◽  
V.V. Lyakhovich ◽  
O.V. Khoruzhii ◽  
O.K. Silchenko

The Fourier analysis of the observed velocity field of ionized gas in the inner 1.5 pc of the Galactic Center (obtained by Roberts and Goss, 1993) is made. As follows from the analysis, the observed field of residual velocities is dominated by the second Fourier harmonic. This fact can be treated as a consequence of the presence of an one-armed density wave with the density maximum along the Northern Arm plus the Western Arc structure. The wave nature of this structure is proved on the base of the behaviour of the phase of the second harmonic of line-of-sight velocity field in the whole region. The Fourier analysis shows also the presence of systematic radial velocity. We consider this flow as a quasi-stationary radial drift caused by one-armed nonlinear density wave (‘mini-spiral’).


2016 ◽  
Vol 11 (S322) ◽  
pp. 21-24
Author(s):  
Elena Murchikova

AbstractThe submm Hydrogen recombination line technique can be used as a probe of the Galactic Center. We present the results of our H30α observations of ionized gas from within 0.015 pc around SgrA*. The observations were obtained on ALMA in cycle 3. The line was not detected, but we were able to set a limit on the mass of the cool gas (T~ 104 K) at 2 × 10−3M⊙. This is the unique probe of gas cooler than T ~106 K traced by X-ray emission. The total amount of gas near SgrA* gives us clues to understanding the accretion rate of SgrA*.


1999 ◽  
Vol 193 ◽  
pp. 493-494
Author(s):  
Víctor Robledo-Rella ◽  
Miriam Peña

Studies of extragalactic (un-resolved) H II regions, usually rely on assumptions about the underlying stellar absorption to estimate the reddening corrections needed to derive physical conditions of the ionized gas and to infer parameters of the ionizing stars (Robledo-Rella & Firmani 1990). We have addressed the problem of estimating quantitatively the effects of the hot star spectra on derived physical (nebular and stellar) parameters of galactic H II regions.


Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract We detected a compact ionized gas associated physically with IRS13E3, an intermediate mass black hole (IMBH) candidate in the Galactic center, in the continuum emission at 232 GHz and H30α recombination line using ALMA Cy.5 observation (2017.1.00503.S, P.I. M.Tsuboi). The continuum emission image shows that IRS13E3 is surrounded by an oval-like structure. The angular size is 0${^{\prime\prime}_{.}}$093 ± 0${^{\prime\prime}_{.}}$006 × 0${^{\prime\prime}_{.}}$061 ± 0${^{\prime\prime}_{.}}$004 (1.14 × 1016 cm × 0.74 × 1016 cm). The structure is also identified in the H30α recombination line. This is seen as an inclined linear feature in the position–velocity diagram, which is usually a defining characteristic of a rotating gas ring around a large mass. The gas ring has a rotating velocity of Vrot ≃ 230 km s−1 and an orbit radius of r ≃ 6 × 1015 cm. From these orbit parameters, the enclosed mass is estimated to be $M_{\mathrm{IMBH}}\simeq 2.4\times 10^{4}\, M_{\odot }$. The mass is within the astrometric upper limit mass of the object adjacent to Sgr A*. Considering IRS13E3 has an X-ray counterpart, the large enclosed mass would be supporting evidence that IRS13E3 is an IMBH. Even if a dense cluster corresponds to IRS13E3, the cluster would collapse into an IMBH within τ < 107 yr due to the very high mass density of $\rho \gtrsim 8\times 10^{11}\, M_{\odot }\:$pc−3. Because the orbital period is estimated to be as short as T = 2πr/Vrot ∼ 50–100 yr, the morphology of the observed ionized gas ring is expected to be changed in the next several decades. The mean electron temperature and density of the ionized gas are $\bar{T}_{\mathrm{e}}=6800\pm 700\:$K and $\bar{n}_{\mathrm{e}}=6\times 10^{5}\:$cm−3, respectively. Then the mass of the ionized gas is estimated to be $M_{\mathrm{gas}}=4\times 10^{-4}\, M_{\odot }$.


Sign in / Sign up

Export Citation Format

Share Document