A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation

1979 ◽  
Vol 12 (3) ◽  
pp. 355-368 ◽  
Author(s):  
C E Wagstaff ◽  
M H Dunn
2020 ◽  
Vol 17 (9) ◽  
pp. 095002
Author(s):  
Xu-Chao Liu ◽  
Zhi-Min Wang ◽  
Yi-Xuan Zhang ◽  
Zi-Han Zhou ◽  
Feng-Feng Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 285
Author(s):  
Enkeleda Balliu ◽  
Magnus Engholm ◽  
Michel Digonnet ◽  
Hans-Erik Nilsson

Single-frequency lasers are essential for high-resolution spectroscopy and sensing applications as they combine high-frequency stability with low noise and high output power stability. For many of these applications, there is increasing interest in power-scaling single-frequency sources, both in the near-infrared and visible spectral range. We report the second-harmonic generation of 670 µJ at 532 nm of a single-frequency fiber amplifier signal operating in the quasi-continuous-wave mode in a 10-mm periodically poled Mg-doped lithium niobate (MgO:PPLN) crystal, while increasing compactness. To the best of our knowledge, this is the highest pulse energy generated in this crystal, which may find applications in the visible and UV such as remote Raman spectroscopy.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


2021 ◽  
Vol 11 (15) ◽  
pp. 7122
Author(s):  
Simona Mosca ◽  
Tobias Hansson ◽  
Maria Parisi

Optical frequency comb synthesizers with a wide spectral range are an essential tool for many research areas such as spectroscopy, precision metrology, optical communication, and sensing. Recent studies have demonstrated the direct generation of frequency combs, via second-order processes, that are centered on two different spectral regions separated by an octave. Here, we present the capability of optical quadratic frequency combs for broad-bandwidth spectral emission in unexplored regimes. We consider comb formation under phase-matched conditions in a continuous-wave pumped singly resonant second-harmonic cavity, with large intracavity power and control of the detuning over several cavity line widths. The spectral analysis reveals quite distinctive sidebands that arise far away from the pump, singularly or in a mixed regime together with narrowband frequency combs. Notably, by increasing the input power, the optical frequency lines evolve into widely spaced frequency clusters, and at maximum power, they appear in a wavelength range spanning up to 100 nm. The obtained results demonstrate the power of second-order nonlinearities for direct comb production within a wide range of pump wavelengths.


Sign in / Sign up

Export Citation Format

Share Document