Effects of current annealing on the hysteresis loop of amorphous alloys

1988 ◽  
Vol 21 (1) ◽  
pp. 162-167 ◽  
Author(s):  
J Gonzalez ◽  
M Vazquez ◽  
J M Barandiaran ◽  
A Hernando
1980 ◽  
Vol 36 (4) ◽  
pp. 339-341 ◽  
Author(s):  
Koichi Aso ◽  
Yoshimi Makino ◽  
Satoru Uedaira ◽  
Shigeyasu Ito ◽  
Masatoshi Hayakawa

2012 ◽  
Vol 48 (2) ◽  
pp. 319-324 ◽  
Author(s):  
N. Mitrovic ◽  
S. Kane ◽  
S. Roth ◽  
A. Kalezic-Glisovic ◽  
C. Mickel ◽  
...  

In this study, the evolution of the nanostructure on dc Joule heated Fe72Al5Ga2P11C6B4 metallic glass ribbons have been investigated. Heating power per square area (PS) was ranging between 0.8 to 7.1 W/cm2 in order to get various stages of relaxation or nanocrystallization. The crystallization starts after applying PS ? 4.35 W/cm2 and the sample consist of residual amorphous matrix, a magnetic crystalline component and also a non-magnetic crystalline component (relative abundance of Fe in the crystalline phase is about 35 %). XRD measurements show that crystalline samples after current annealing consist of Fe3B, FeC, FeP and Fe3P compounds. On TEM micrograph a broad distribution of shapes and sizes is noticed, the latter range from about 60 to 350 nm, increasing by applied heating power. The decrease of the electrical resistivity after each current annealing treatment is rather small in comparison with other Fe-based amorphous alloys (only about 1.5 % for the highest PS). Partial nanocrystallization leads to increase of coercive field (from HC ? 7 A/m in the amorphous as-cast state up to 45 A/m) attributed to precipitation of magnetically harder compounds (Fe3B and FeC).


2000 ◽  
Vol 8 (3) ◽  
pp. 287-291 ◽  
Author(s):  
A. Gupta ◽  
N. Bhagat ◽  
G. Principi ◽  
A. Maddalena ◽  
N. Malhotra ◽  
...  

Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


Sign in / Sign up

Export Citation Format

Share Document